miRNA, siRNA, and lncRNA: Recent Development of Bioinformatics Tools and Databases in Support of Combating Different Diseases


Cite item

Full Text

Abstract

Today, the bioinformatics tool and database development are one of the most significant research areas in computational biology. Computational biologists are developing diverse bioinformatics tools and databases in the various fields of biological science. Nowadays, several non-coding RNAs (ncRNA) have been studied extensively, which act as a mediator of the regulation of gene expression. ncRNA is a functional RNA molecule that is transcribed from the mammalian genome. It also controls the disease regulation pathway. Based on the size, ncRNA can be classified into three categories such as small ncRNA (~18–30 nt), medium ncRNA (~30–200 nt), and long ncRNA (from 200 nt to several hundred kb). The miRNA and siRNAs are two types of ncRNA. Various bioinformatics tools and databases have recently been developed to understand the different ncRNAs (miRNAs, siRNAs, and lncRNAs) disease association. We have illustrated different bioinformatics resources, such as in silico tools and databases, currently available for researching miRNAs, siRNAs, and lncRNAs. Some bioinformatics- based miRNA tools are miRbase, miRecords, miRCancer, miRSystem, miRGator, miRNEST, mirtronPred and miRIAD, etc. Bioinformatics-based siRNA tools are siPRED, siDRM, sIR, siDirect 2.0. Bioinformatics-based lncRNAs tools are lncRNAdb v2, lncRNAtor, LncDisease, iLoc-lncRNA, etc. These tools and databases benefit molecular biologists, biomedical researchers, and computational biologists.

About the authors

Chiranjib Chakraborty

Department of Biotechnology, School of Life Science and Biotechnology,, Adamas University

Author for correspondence.
Email: info@benthamscience.net

Manojit Bhattacharya

Department of Zoology, Fakir Mohan University

Email: info@benthamscience.net

Ashish Ranjan Sharma

Institute for Skeletal Aging & Orthopaedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University

Email: info@benthamscience.net

References

  1. Nagarajan N, Yapp EKY, Le NQK, Kamaraj B, Al-Subaie AM, Yeh HY. Application of computational biology and artificial intelligence technologies in cancer precision drug discovery. BioMed Res Int 2019; 2019: 1-15. doi: 10.1155/2019/8427042 PMID: 31886259
  2. Koumakis L. Deep learning models in genomics; Are we there yet? Comput Struct Biotechnol J 2020; 18: 1466-73. doi: 10.1016/j.csbj.2020.06.017 PMID: 32637044
  3. Tramontano A. Bioinformatics. In: Encyclopedia of Life Sciences (ELS). Chichester: John Wiley & Sons, Ltd 2009. doi: 10.1002/9780470015902.a0001900.pub2
  4. Rigden DJ, Fernández XM. The 2018 Nucleic Acids Research database issue and the online molecular biology database collection. Nucleic Acids Res 2018; 46(D1): D1-7. doi: 10.1093/nar/gkx1235 PMID: 29316735
  5. Galperin MY, Fernández-Suárez XM. The 2012 nucleic acids research database issue and the online molecular biology database collection. Nucleic Acids Res 2012; 40(D1): D1-8. doi: 10.1093/nar/gkr1196 PMID: 22144685
  6. Oliveira AL. Biotechnology, big data and artificial intelligence. Biotechnol J 2019; 14(8): 1800613. doi: 10.1002/biot.201800613 PMID: 30927505
  7. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. cell 1993; 75(5): 843-54.
  8. Mello CC, Conte D Jr. Revealing the world of RNA interference. Nature 2004; 431(7006): 338-42. doi: 10.1038/nature02872 PMID: 15372040
  9. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391(6669): 806-11. doi: 10.1038/35888 PMID: 9486653
  10. Agrawal N, Dasaradhi PVN, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK. RNA interference: Biology, mechanism, and applications. Microbiol Mol Biol Rev 2003; 67(4): 657-85. doi: 10.1128/MMBR.67.4.657-685.2003 PMID: 14665679
  11. Jana S, Chakraborty C, Nandi S, Deb JK. RNA interference: Potential therapeutic targets. Appl Microbiol Biotechnol 2004; 65(6): 649-57. doi: 10.1007/s00253-004-1732-1 PMID: 15372214
  12. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs: Table 1. Genes Dev 2006; 20(5): 515-24. doi: 10.1101/gad.1399806 PMID: 16510870
  13. Nagano T, Fraser P. No-nonsense functions for long noncoding RNAs. Cell 2011; 145(2): 178-81. doi: 10.1016/j.cell.2011.03.014 PMID: 21496640
  14. Ghildiyal M, Zamore PD. Small silencing RNAs: An expanding universe. Nat Rev Genet 2009; 10(2): 94-108. doi: 10.1038/nrg2504 PMID: 19148191
  15. Bartel DP. MicroRNAs. Cell 2004; 116(2): 281-97. doi: 10.1016/S0092-8674(04)00045-5 PMID: 14744438
  16. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010; 11(9): 597-610. doi: 10.1038/nrg2843 PMID: 20661255
  17. Mallick B, Sharma AR, Lee SS, Chakraborty C. Understanding the molecular interaction of human argonaute‐2 and miR‐20a complex: A molecular dynamics approach. J Cell Biochem 2019; 120(12): 19915-24. doi: 10.1002/jcb.29300 PMID: 31318096
  18. Wilson RC, Tambe A, Kidwell MA, Noland CL, Schneider CP, Doudna JA. Dicer-TRBP complex formation ensures accurate mammalian microRNA biogenesis. Mol Cell 2015; 57(3): 397-407. doi: 10.1016/j.molcel.2014.11.030 PMID: 25557550
  19. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014; 15(8): 509-24. doi: 10.1038/nrm3838 PMID: 25027649
  20. de Rie D, Abugessaisa I, Alam T, et al. An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat Biotechnol 2017; 35(9): 872-8. doi: 10.1038/nbt.3947 PMID: 28829439
  21. Kim YK, Kim VN. Processing of intronic microRNAs. EMBO J 2007; 26(3): 775-83. doi: 10.1038/sj.emboj.7601512 PMID: 17255951
  22. Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 2007; 130(1): 89-100. doi: 10.1016/j.cell.2007.06.028 PMID: 17599402
  23. Broughton JP, Lovci MT, Huang JL, Yeo GW, Pasquinelli AE. Pairing beyond the seed supports microRNA targeting specificity. Mol Cell 2016; 64(2): 320-33. doi: 10.1016/j.molcel.2016.09.004 PMID: 27720646
  24. Makarova JA, Shkurnikov MU, Wicklein D, et al. Intracellular and extracellular microRNA: An update on localization and biological role. Prog Histochem Cytochem 2016; 51(3-4): 33-49. doi: 10.1016/j.proghi.2016.06.001 PMID: 27396686
  25. Chakraborty C, Doss CGP, Sarin R, Hsu MJ, Agoramoorthy G. Can the chemotherapeutic agents perform anticancer activity though miRNA expression regulation? Proposing a new hypothesis. Protoplasma 2015; 252(6): 1603-10. doi: 10.1007/s00709-015-0776-7 PMID: 25698235
  26. Bhattacharya M, Sharma AR, Sharma G, et al. The crucial role and regulations of miRNAs in zebrafish development. Protoplasma 2017; 254(1): 17-31. doi: 10.1007/s00709-015-0931-1 PMID: 26820151
  27. Tüfekci KU, Meuwissen RLJ, Genç Ş. The role of microRNAs in biological processes, in miRNomics: microRNA biology and computational analysis. In:Methods in Molecular Biology Springer(1107). Totowa, NJ: Humana Press 2014.
  28. Paul P, Chakraborty A, Sarkar D, et al. Interplay between miRNAs and human diseases. J Cell Physiol 2018; 233(3): 2007-18. doi: 10.1002/jcp.25854 PMID: 28181241
  29. Sharma AR, Sharma G, Lee SS, Chakraborty C. miRNA-regulated key components of cytokine signaling pathways and inflammation in rheumatoid arthritis. Med Res Rev 2016; 36(3): 425-39. doi: 10.1002/med.21384 PMID: 26786912
  30. Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature 2011; 469(7330): 336-42. doi: 10.1038/nature09783 PMID: 21248840
  31. Chakraborty C, Chin KY, Das S. miRNA-regulated cancer stem cells: understanding the property and the role of miRNA in carcinogenesis. Tumour Biol 2016; 37(10): 13039-48. doi: 10.1007/s13277-016-5156-1 PMID: 27468722
  32. Chakraborty C, Sharma AR, Patra BC, Bhattacharya M, Sharma G, Lee SS. MicroRNAs mediated regulation of MAPK signaling pathways in chronic myeloid leukemia. Oncotarget 2016; 7(27): 42683-97. doi: 10.18632/oncotarget.7977 PMID: 26967056
  33. Chakraborty C, Sharma AR, Sharma G, Lee SS. The interplay among miRNAs, major cytokines, and cancer-related inflammation. Mol Ther Nucleic Acids 2020; 20: 606-20. doi: 10.1016/j.omtn.2020.04.002 PMID: 32348938
  34. Chakraborty C, Doss CGP, Bandyopadhyay S, Agoramoorthy G. Influence of miRNA in insulin signaling pathway and insulin resistance: Micro‐molecules with a major role in type‐2 diabetes. Wiley Interdiscip Rev RNA 2014; 5(5): 697-712. doi: 10.1002/wrna.1240 PMID: 24944010
  35. Chakraborty C, George Priya Doss C, Bandyopadhyay S. miRNAs in insulin resistance and diabetes-associated pancreatic cancer: The ‘minute and miracle’ molecule moving as a monitor in the ‘genomic galaxy’. Curr Drug Targets 2013; 14(10): 1110-7. doi: 10.2174/13894501113149990182 PMID: 23834149
  36. Bhattacharya M, Sharma AR, Sharma G, Patra BC, Lee SS, Chakraborty C. Interaction between miRNAs and signaling cascades of Wnt pathway in chronic lymphocytic leukemia. J Cell Biochem 2020; 121(11): 4654-66. doi: 10.1002/jcb.29683 PMID: 32100920
  37. Gupta P, Bhattacharjee S, Sharma AR, Sharma G, Lee SS, Chakraborty C. miRNAs in Alzheimer Disease-a therapeutic perspective. Curr Alzheimer Res 2017; 14(11): 1198-206. PMID: 28847283
  38. Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 2013; 12(11): 847-65. doi: 10.1038/nrd4140 PMID: 24172333
  39. Samanta S, Balasubramanian S, Rajasingh S, et al. MicroRNA: A new therapeutic strategy for cardiovascular diseases. Trends Cardiovasc Med 2016; 26(5): 407-19. doi: 10.1016/j.tcm.2016.02.004 PMID: 27013138
  40. Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee SS. Therapeutic miRNA and siRNA: Moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids 2017; 8: 132-43. doi: 10.1016/j.omtn.2017.06.005 PMID: 28918016
  41. Chakraborty C, Sharma AR, Sharma G, Lee SS. Therapeutic advances of miRNAs: A preclinical and clinical update. J Adv Res 2021; 28: 127-38. doi: 10.1016/j.jare.2020.08.012 PMID: 33364050
  42. Chakraborty C, Das S. Profiling cell-free and circulating miRNA: A clinical diagnostic tool for different cancers. Tumour Biol 2016; 37(5): 5705-14. doi: 10.1007/s13277-016-4907-3 PMID: 26831657
  43. Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009; 10(2): 126-39. doi: 10.1038/nrm2632 PMID: 19165215
  44. Axtell MJ, Westholm JO, Lai EC. Vive la différence: Biogenesis and evolution of microRNAs in plants and animals. Genome Biol 2011; 12(4): 221. doi: 10.1186/gb-2011-12-4-221 PMID: 21554756
  45. Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature 2004; 431(7006): 343-9. doi: 10.1038/nature02873 PMID: 15372041
  46. Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000; 404(6775): 293-6. doi: 10.1038/35005107 PMID: 10749213
  47. Wang J, Lu Z, Wientjes MG, Au JLS. Delivery of siRNA therapeutics: barriers and carriers. AAPS J 2010; 12(4): 492-503. doi: 10.1208/s12248-010-9210-4 PMID: 20544328
  48. Chakraborty C. Potentiality of small interfering RNAs (siRNA) as recent therapeutic targets for gene-silencing. Curr Drug Targets 2007; 8(3): 469-82. doi: 10.2174/138945007780058988 PMID: 17348839
  49. Patzel V. In silico selection of active siRNA. Drug Discov Today 2007; 12(3-4): 139-48. doi: 10.1016/j.drudis.2006.11.015 PMID: 17275734
  50. Marchese FP, Raimondi I, Huarte M. The multidimensional mechanisms of long noncoding RNA function. Genome Biol 2017; 18(1): 206. doi: 10.1186/s13059-017-1348-2 PMID: 29084573
  51. Fernandes J, Acuña S, Aoki J, Floeter-Winter L, Muxel S. Long Non-Coding RNAs in the regulation of gene expression: physiology and disease. Noncoding RNA 2019; 5(1): 17. doi: 10.3390/ncrna5010017 PMID: 30781588
  52. Hinske LC, França GS, Torres HAM, et al. miRIAD—integrating microRNA inter- and intragenic data. Database 2014; 2014: bau099. doi: 10.1093/database/bau099 PMID: 25288656
  53. Chan WC, Lin W. MetaMirClust: Discovery and exploration of evolutionarily conserved miRNA cluster. Methods Mol Biol 2015; 1375: 75-89. doi: 10.1007/7651_2015_237 PMID: 25861770
  54. Loraine K. Winning strategies when the game is confrontation. RN 1989; 52(3): 18-20. PMID: 2734552
  55. Huang L, Zhang L, Chen X. Updated review of advances in microRNAs and complex diseases: taxonomy, trends and challenges of computational models. Brief Bioinform 2022; 23(5): bbac358. doi: 10.1093/bib/bbac358 PMID: 36056743
  56. Chen X, Xie D, Zhao Q, You ZH. From experimental results to computational models: From experimental results to computational models. Brief Bioinform 2019; 20(2): 515-39. doi: 10.1093/bib/bbx130 PMID: 29045685
  57. Chen L, Heikkinen L, Wang C, Yang Y, Knott KE, Wong G. miRToolsGallery: A tag-based and rankable microRNA bioinformatics resources database portal. Database 2018; 2018: bay004. doi: 10.1093/database/bay004 PMID: 29688355
  58. Gardner PP, Daub J, Tate JG, et al. Rfam: updates to the RNA families database. Nucleic Acids Res 2009; 37: D136-40. doi: 10.1093/nar/gkn766 PMID: 18953034
  59. Kozomara A, Griffiths-Jones S. miRBase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 2014; 42(D1): D68-73. doi: 10.1093/nar/gkt1181 PMID: 24275495
  60. Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T. miRecords: An integrated resource for microRNA-target interactions. Nucleic Acids Res 2009; 37 (Suppl. 1): D105-10. doi: 10.1093/nar/gkn851 PMID: 18996891
  61. Sethupathy P, Corda B, Hatzigeorgiou AG. TarBase: A comprehensive database of experimentally supported animal microRNA targets. RNA 2006; 12(2): 192-7. doi: 10.1261/rna.2239606 PMID: 16373484
  62. Betel D, Koppal A, Agius P, Sander C, Leslie C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 2010; 11(8): R90. doi: 10.1186/gb-2010-11-8-r90 PMID: 20799968
  63. Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015; 4: e05005. doi: 10.7554/eLife.05005 PMID: 26267216
  64. Brown JR, Sanseau P. A computational view of microRNAs and their targets. Drug Discov Today 2005; 10(8): 595-601. doi: 10.1016/S1359-6446(05)03399-4 PMID: 15837603
  65. Yuan C, Meng X, Li X, et al. PceRBase: A database of plant competing endogenous RNA. Nucleic Acids Res 2017; 45(D1): D1009-14. doi: 10.1093/nar/gkw916 PMID: 28053167
  66. Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 2014; 42(D1): D92-7. doi: 10.1093/nar/gkt1248 PMID: 24297251
  67. Keerthikumar S, Chisanga D, Ariyaratne D, et al. ExoCarta: A web-based compendium of exosomal cargo. J Mol Biol 2016; 428(4): 688-92. doi: 10.1016/j.jmb.2015.09.019 PMID: 26434508
  68. Russo F, Di Bella S, Vannini F, et al. miRandola 2017: A curated knowledge base of non-invasive biomarkers. Nucleic Acids Res 2018; 46(D1): D354-9. doi: 10.1093/nar/gkx854 PMID: 29036351
  69. Liu C, Zhang F, Li T, et al. MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs. BMC Genomics 2012; 13(1): 661. doi: 10.1186/1471-2164-13-661 PMID: 23173617
  70. Chien CH, Sun YM, Chang WC, et al. Identifying transcriptional start sites of human microRNAs based on high-throughput sequencing data. Nucleic Acids Res 2011; 39(21): 9345-56. doi: 10.1093/nar/gkr604 PMID: 21821656
  71. Georgakilas G, Vlachos IS, Paraskevopoulou MD, et al. microTSS: accurate microRNA transcription start site identification reveals a significant number of divergent pri-miRNAs. Nat Commun 2014; 5(1): 5700. doi: 10.1038/ncomms6700 PMID: 25492647
  72. Wang J, Lu M, Qiu C, Cui Q, Transmi R. TransmiR: A transcription factor–microRNA regulation database. Nucleic Acids Res 2010; 38 (Suppl. 1): D119-22. doi: 10.1093/nar/gkp803 PMID: 19786497
  73. Xie B, Ding Q, Han H, Wu D. miRCancer: A microRNA-cancer association database constructed by text mining on literature. Bioinformatics 2013; 29(5): 638-44. doi: 10.1093/bioinformatics/btt014 PMID: 23325619
  74. Lu TP, Lee CY, Tsai MH, et al. miRSystem: An integrated system for characterizing enriched functions and pathways of microRNA targets. PLoS One 2012; 7(8): e42390. doi: 10.1371/journal.pone.0042390 PMID: 22870325
  75. Cho S, Jang I, Jun Y, et al. MiRGator v3.0: A microRNA portal for deep sequencing, expression profiling and mRNA targeting. Nucleic Acids Res 2013; 41(Database issue): D252-7. PMID: 23193297
  76. Szcześniak MW, Makałowska I. miRNEST 2.0: A database of plant and animal microRNAs. Nucleic Acids Res 2014; 42(D1): D74-7. doi: 10.1093/nar/gkt1156 PMID: 24243848
  77. Zhou KR, Liu S, Sun WJ, et al. ChIPBase v2.0: Decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data. Nucleic Acids Res 2017; 45(D1): D43-50. doi: 10.1093/nar/gkw965 PMID: 27924033
  78. Piriyapongsa J, Bootchai C, Ngamphiw C, Tongsima S. microPIR: An integrated database of microRNA target sites within human promoter sequences. PLoS One 2012; 7(3): e33888. doi: 10.1371/journal.pone.0033888 PMID: 22439011
  79. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: Tools for microRNA genomics. Nucleic Acids Res 2008; 36: D154-8. PMID: 17991681
  80. Williams KP, Lau BY. RNAcentral: A comprehensive database of non-coding RNA sequences. Nucleic Acids Res 2017; 45(D1): D128-34.
  81. Laganà A, Forte S, Giudice A, et al. miRo: a miRNA knowledge base. Database 2009; 2009: bap008. doi: 10.1093/database/bap008 PMID: 20157481
  82. Oak N, Ghosh R, Huang K, Wheeler DA, Ding L, Plon SE. Framework for microRNA variant annotation and prioritization using human population and disease datasets. Hum Mutat 2019; 40(1): 73-89. doi: 10.1002/humu.23668 PMID: 30302893
  83. Maselli V, Di Bernardo D, Banfi S. CoGemiR: A comparative genomics microRNA database. BMC Genomics 2008; 9(1): 457. doi: 10.1186/1471-2164-9-457 PMID: 18837977
  84. Dai E, Lv Y, Meng F, et al. CREAM: A database for chemotherapy resistance-associated miRSNP. Cell Death Dis 2014; 5(5): e1272-2. doi: 10.1038/cddis.2014.236 PMID: 24874743
  85. Yang Z, Wu L, Wang A, et al. dbDEMC 2.0: Updated database of differentially expressed miRNAs in human cancers. Nucleic Acids Res 2017; 45(D1): D812-8. doi: 10.1093/nar/gkw1079 PMID: 27899556
  86. Karagkouni D, Paraskevopoulou MD, Chatzopoulos S, et al. DIANA-TarBase v8: A decade-long collection of experimentally supported miRNA–gene interactions. Nucleic Acids Res 2018; 46(D1): D239-45. doi: 10.1093/nar/gkx1141 PMID: 29156006
  87. Dai E, Yu X, Zhang Y, et al. EpimiR: a database of curated mutual regulation between miRNAs and epigenetic modifications. Database 2014; 2014: bau023-3. doi: 10.1093/database/bau023 PMID: 24682734
  88. Gennarino VA, Sardiello M, Mutarelli M, et al. HOCTAR database: A unique resource for microRNA target prediction. Gene 2011; 480(1-2): 51-8. doi: 10.1016/j.gene.2011.03.005 PMID: 21435384
  89. Joshi PK, Gupta D, Nandal UK, Khan Y, Mukherjee SK, Sanan-Mishra N. Identification of mirtrons in rice using MirtronPred: A tool for predicting plant mirtrons. Genomics 2012; 99(6): 370-5. doi: 10.1016/j.ygeno.2012.04.002 PMID: 22546559
  90. Liu Q, Wang J, Zhao Y, et al. Identification of active miRNA promoters from nuclear run-on RNA sequencing. Nucleic Acids Res 2017; 45(13): e121. doi: 10.1093/nar/gkx318 PMID: 28460090
  91. Lorenz R, Bernhart SH, Höner zu Siederdissen C, et al. ViennaRNA Package 2.0. Algorithms Mol Biol 2011; 6(1): 26. doi: 10.1186/1748-7188-6-26 PMID: 22115189
  92. Bellaousov S, Reuter JS, Seetin MG. RNAstructure: Web servers for RNA secondary structure prediction and analysis. Nucleic Acids Res 2013; 41(W471)
  93. Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 2012; 40(1): 37-52. doi: 10.1093/nar/gkr688 PMID: 21911355
  94. Hackenberg M, Rodriguez-Ezpeleta N, Aransay AM. miRanalyzer: An update on the detection and analysis of microRNAs in high-throughput sequencing experiments. Nucleic Acids Res 2011; 39: W132-138.
  95. Tav C, Tempel S, Poligny L, Tahi F. miRNAFold: A web server for fast miRNA precursor prediction in genomes. Nucleic Acids Res 2016; 44(W1): W181-4. doi: 10.1093/nar/gkw459 PMID: 27242364
  96. Lall S, Grün D, Krek A, et al. A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol 2006; 16(5): 460-71. doi: 10.1016/j.cub.2006.01.050 PMID: 16458514
  97. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microRNA target recognition. Nat Genet 2007; 39(10): 1278-84. doi: 10.1038/ng2135 PMID: 17893677
  98. Kruger J, Rehmsmeier M. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 2006; 34: W451-454. doi: 10.1093/nar/gkl243
  99. Tyagi S, Vaz C, Gupta V, et al. CID-miRNA: A web server for prediction of novel miRNA precursors in human genome. Biochem Biophys Res Commun 2008; 372(4): 831-4. doi: 10.1016/j.bbrc.2008.05.134 PMID: 18522801
  100. Mhuantong W, Wichadakul D. MicroPC (µPC): A comprehensive resource for predicting and comparing plant microRNAs. BMC Genomics 2009; 10(1): 366. doi: 10.1186/1471-2164-10-366 PMID: 19660144
  101. Hansen TB, Venø MT, Kjems J, Damgaard CK. miRdentify: high stringency miRNA predictor identifies several novel animal miRNAs. Nucleic Acids Res 2014; 42(16): e124. doi: 10.1093/nar/gku598 PMID: 25053842
  102. Vitsios DM, Kentepozidou E, Quintais L, et al. Mirnovo: genome-free prediction of microRNAs from small RNA sequencing data and single-cells using decision forests. Nucleic Acids Res 2017; 45(21): e177. doi: 10.1093/nar/gkx836 PMID: 29036314
  103. Jiang P, Wu H, Wang W, Ma W, Sun X, Lu Z. MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res 2007; 35 (Suppl. 2): W339-44. doi: 10.1093/nar/gkm368 PMID: 17553836
  104. Wang WC, Lin FM, Chang WC, Lin KY, Huang HD, Lin NS. miRExpress: Analyzing high-throughput sequencing data for profiling microRNA expression. BMC Bioinformatics 2009; 10(1): 328. doi: 10.1186/1471-2105-10-328 PMID: 19821977
  105. Sablok G, Milev I, Minkov G, et al. isomiRex: Web-based identification of microRNAs, isomiR variations and differential expression using next-generation sequencing datasets. FEBS Lett 2013; 587(16): 2629-34. doi: 10.1016/j.febslet.2013.06.047 PMID: 23831580
  106. Zhang Y. miRU: An automated plant miRNA target prediction server. Nucleic Acids Res 2005; 33: W701-704.
  107. Gaidatzis D, van Nimwegen E, Hausser J, Zavolan M. Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics 2007; 8(1): 69. doi: 10.1186/1471-2105-8-69 PMID: 17331257
  108. Reczko M, Maragkakis M, Alexiou P, Grosse I, Hatzigeorgiou AG. Functional microRNA targets in protein coding sequences. Bioinformatics 2012; 28(6): 771-6. doi: 10.1093/bioinformatics/bts043 PMID: 22285563
  109. Miranda KC, Huynh T, Tay Y, et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 2006; 126(6): 1203-17. doi: 10.1016/j.cell.2006.07.031 PMID: 16990141
  110. Jeggari A, Marks DS, Larsson E. miRcode: a map of putative microRNA target sites in the long non-coding transcriptome. Bioinformatics 2012; 28(15): 2062-3. doi: 10.1093/bioinformatics/bts344 PMID: 22718787
  111. Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP. Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 2011; 18(10): 1139-46. doi: 10.1038/nsmb.2115 PMID: 21909094
  112. Heikkinen L, Kolehmainen M, Wong G. Prediction of microRNA targets in Caenorhabditis elegans using a self-organizing map. Bioinformatics 2011; 27(9): 1247-54. doi: 10.1093/bioinformatics/btr144 PMID: 21422073
  113. Fahlgren N, Carrington JC. miRNA target prediction in plants. Methods Mol Biol 2010; 592: 51-7. doi: 10.1007/978-1-60327-005-2_4 PMID: 19802588
  114. Huang JC, Babak T, Corson TW, et al. Using expression profiling data to identify human microRNA targets. Nat Methods 2007; 4(12): 1045-9. doi: 10.1038/nmeth1130 PMID: 18026111
  115. Bhattacharya A, Ziebarth JD, Cui Y. PolymiRTS Database 3.0: linking polymorphisms in microRNAs and their target sites with human diseases and biological pathways. Nucleic Acids Res 2014; 42(D1): D86-91. doi: 10.1093/nar/gkt1028 PMID: 24163105
  116. Wang X. Improving microRNA target prediction by modeling with unambiguously identified microRNA-target pairs from CLIP-ligation studies. Bioinformatics 2016; 32(9): 1316-22. doi: 10.1093/bioinformatics/btw002 PMID: 26743510
  117. Bottini S, Hamouda-Tekaya N, Tanasa B, et al. From benchmarking HITS-CLIP peak detection programs to a new method for identification of miRNA-binding sites from Ago2-CLIP data. Nucleic Acids Res 2017; 45(9): e71. doi: 10.1093/nar/gkx007 PMID: 28108660
  118. Pan X, Shen HB. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach. BMC Bioinformatics 2017; 18(1): 136. doi: 10.1186/s12859-017-1561-8 PMID: 28245811
  119. Lee B, Baek J, Park S, Yoon S. deepTarget: End-to-end Learning Framework for microRNA Target Prediction using Deep Recurrent Neural Networks. Proceedings of the 7th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics:. Seattle, USA. New York, USA: Association for Computing Machinery: 2016; pp. 434-42. doi: 10.1145/2975167.2975212
  120. Cheng S, Guo M, Wang C, Liu X, Liu Y. MiRTDL: A deep learning approach for miRNA target prediction. IEEE/ACM Trans Comput Biol Bioinform 2016; 13(6): 1161-9.
  121. Gruber AR, Findeiß S, Washietl S, Hofacker IL, Stadler PF, Wu X. RNAz 2.0: Improved noncoding RNA detection. Pac Symp Biocomput 2010; 13(6): 69-79. PMID: 19908359
  122. Lim LP, Lau NC, Weinstein EG, et al. The microRNAs of Caenorhabditis elegans. Genes Dev 2003; 17(8): 991-1008. doi: 10.1101/gad.1074403 PMID: 12672692
  123. Alon S, Eisenberg E. Identifying RNA editing sites in miRNAs by deep sequencing. Methods Mol Biol 2013; 1038: 159-70. doi: 10.1007/978-1-62703-514-9_9 PMID: 23872974
  124. Xue B, Lipps D, Devineni S. Integrated strategy improves the prediction accuracy of miRNA in large dataset. PLoS One 2016; 11(12): e0168392. doi: 10.1371/journal.pone.0168392 PMID: 28002428
  125. Xue C, Li F, He T, Liu GP, Li Y, Zhang X. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics 2005; 6(1): 310. doi: 10.1186/1471-2105-6-310 PMID: 16381612
  126. Wu Y, Wei B, Liu H, Li T, Rayner S. MiRPara: a SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences. BMC Bioinformatics 2011; 12(1): 107. doi: 10.1186/1471-2105-12-107 PMID: 21504621
  127. Mathelier A, Carbone A. MIReNA: finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data. Bioinformatics 2010; 26(18): 2226-34. doi: 10.1093/bioinformatics/btq329 PMID: 20591903
  128. Nam JW, Kim J, Kim SK, Zhang BT. ProMiR II: A web server for the probabilistic prediction of clustered, nonclustered, conserved and nonconserved microRNAs. Nucleic Acids Res 2006; 34: W455-458. doi: 10.1093/nar/gkl321
  129. Mapleson D, Moxon S, Dalmay T, Moulton V. MirPlex: A tool for identifying miRNAs in high-throughput sRNA datasets without a genome. J Exp Zoolog B Mol Dev Evol 2013; 320(1): 47-56. doi: 10.1002/jez.b.22483 PMID: 23184675
  130. Pan WJ, Chen CW, Chu YW. siPRED: Predicting siRNA efficacy using various characteristic methods. PLoS One 2011; 6(11): e27602. doi: 10.1371/journal.pone.0027602 PMID: 22102913
  131. Gong W, Ren Y, Zhou H, Wang Y, Kang S, Li T. siDRM: An effective and generally applicable online siRNA design tool. Bioinformatics 2008; 24(20): 2405-6. doi: 10.1093/bioinformatics/btn442 PMID: 18718944
  132. Shah JK, Garner HR, White MA, Shames DS, Minna JD. sIR: siRNA Information Resource, a web-based tool for siRNA sequence design and analysis and an open access siRNA database. BMC Bioinformatics 2007; 8(1): 178. doi: 10.1186/1471-2105-8-178 PMID: 17540034
  133. Naito Y, Yoshimura J, Morishita S, Ui-Tei K. siDirect 2.0: Updated software for designing functional siRNA with reduced seed-dependent off-target effect. BMC Bioinformatics 2009; 10(1): 392. doi: 10.1186/1471-2105-10-392 PMID: 19948054
  134. Holen T. Efficient prediction of siRNAs with siRNArules 1.0: An open-source JAVA approach to siRNA algorithms. RNA 2006; 12(9): 1620-5. doi: 10.1261/rna.81006 PMID: 16870995
  135. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design for RNA interference. Nat Biotechnol 2004; 22(3): 326-30. doi: 10.1038/nbt936 PMID: 14758366
  136. Ding Y, Chan CY, Lawrence CE. Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res 2004; 32: W135-141. doi: 10.1093/nar/gkh449
  137. Chalk AM, Warfinge RE, Georgii-Hemming P, Sonnhammer EL. siRNAdb: A database of siRNA sequences. Nucleic Acids Res 2004; 33: D131-4. doi: 10.1093/nar/gki136 PMID: 15608162
  138. Truss M, Swat M, Kielbasa SM, Schäfer R, Herzel H, Hagemeier C. HuSiDa--the human siRNA database: an open-access database for published functional siRNA sequences and technical details of efficient transfer into recipient cells. Nucleic Acids Res 2004; 33: D108-11. doi: 10.1093/nar/gki131 PMID: 15608157
  139. Boudreau RL, Spengler RM, Hylock RH, et al. siSPOTR: a tool for designing highly specific and potent siRNAs for human and mouse. Nucleic Acids Res 2013; 41(1): e9-9. doi: 10.1093/nar/gks797 PMID: 22941647
  140. Thody J, Folkes L, Moulton V. NATpare: a pipeline for high-throughput prediction and functional analysis of nat-siRNAs. Nucleic Acids Res 2020; 48(12): 6481-90. doi: 10.1093/nar/gkaa448 PMID: 32463462
  141. Sciabola S, Xi H, Cruz D, et al. PFRED: A computational platform for siRNA and antisense oligonucleotides design. PLoS One 2021; 16(1): e0238753. doi: 10.1371/journal.pone.0238753 PMID: 33481821
  142. Quek XC, Thomson DW, Maag JLV, et al. lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res 2015; 43(D1): D168-73. doi: 10.1093/nar/gku988 PMID: 25332394
  143. Park C, Yu N, Choi I, Kim W, Lee S. lncRNAtor: A comprehensive resource for functional investigation of long non-coding RNAs. Bioinformatics 2014; 30(17): 2480-5. doi: 10.1093/bioinformatics/btu325 PMID: 24813212
  144. Wang J, Ma R, Ma W, et al. LncDisease: A sequence based bioinformatics tool for predicting lncRNA-disease associations. Nucleic Acids Res 2016; 44(9): e90. doi: 10.1093/nar/gkw093 PMID: 26887819
  145. Su ZD, Huang Y, Zhang ZY, et al. iLoc-lncRNA: predict the subcellular location of lncRNAs by incorporating octamer composition into general PseKNC. Bioinformatics 2018; 34(24): 4196-204. doi: 10.1093/bioinformatics/bty508 PMID: 29931187
  146. Amaral PP, Clark MB, Gascoigne DK, Dinger ME, Mattick JS. lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res 2011; 39 (Suppl. 1): D146-51. doi: 10.1093/nar/gkq1138 PMID: 21112873
  147. He S, Liu C, Skogerbø G, et al. NONCODE v2.0: decoding the non-coding. Nucleic Acids Res 2008; 36: D170-2. PMID: 18000000
  148. Mituyama T, Yamada K, Hattori E, et al. The Functional RNA Database 3.0: databases to support mining and annotation of functional RNAs. Nucleic Acids Res 2009; 37: D89-92. doi: 10.1093/nar/gkn805 PMID: 18948287
  149. Pang KC, Stephen S, Dinger ME, Engström PG, Lenhard B, Mattick JS. RNAdb 2.0--an expanded database of mammalian non-coding RNAs. Nucleic Acids Res 2007; 35: D178-82. doi: 10.1093/nar/gkl926 PMID: 17145715
  150. Zhang Y, Guan DG, Yang JH, Shao P, Zhou H, Qu LH. ncRNAimprint: A comprehensive database of mammalian imprinted noncoding RNAs. RNA 2010; 16(10): 1889-901. doi: 10.1261/rna.2226910 PMID: 20801769
  151. Seifuddin F, Singh K, Suresh A, et al. lncRNAKB, a knowledgebase of tissue-specific functional annotation and trait association of long noncoding RNA. Sci Data 2020; 7(1): 326. doi: 10.1038/s41597-020-00659-z PMID: 33020484
  152. Volders PJ, Helsens K, Wang X, et al. LNCipedia: A database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res 2013; 41(D1): D246-51. doi: 10.1093/nar/gks915 PMID: 23042674
  153. Vancura A, Lanzós A, Bosch-Guiteras N, et al. Cancer LncRNA Census 2 (CLC2): an enhanced resource reveals clinical features of cancer lncRNAs. NAR Cancer 2021; 3(2): zcab013. doi: 10.1093/narcan/zcab013 PMID: 34316704
  154. Liu CJ, Fu X, Xia M, Zhang Q, Gu Z, Guo AY. miRNASNP-v3: A comprehensive database for SNPs and disease-related variations in miRNAs and miRNA targets. Nucleic Acids Res 2021; 49(D1): D1276-81. doi: 10.1093/nar/gkaa783 PMID: 32990748
  155. Xie GY, Xia M, Miao YR, Luo M, Zhang Q, Guo AY. FFLtool: A web server for transcription factor and miRNA feed forward loop analysis in human. Bioinformatics 2020; 36(8): 2605-7. doi: 10.1093/bioinformatics/btz929 PMID: 31830251
  156. Gong J, Liu W, Zhang J, Miao X, Guo AY. lncRNASNP: A database of SNPs in lncRNAs and their potential functions in human and mouse. Nucleic Acids Res 2015; 43(D1): D181-6. doi: 10.1093/nar/gku1000 PMID: 25332392
  157. Shirley M. Casimersen: First Approval. Drugs 2021; 81(7): 875-9. doi: 10.1007/s40265-021-01512-2 PMID: 33861387
  158. Clemens PR, Rao VK, Connolly AM, et al. Safety, tolerability, and efficacy of viltolarsen in boys with duchenne muscular dystrophy amenable to exon 53 skipping: a phase 2 randomized clinical trial. JAMA Neurol 2020; 77(8): 982-91. doi: 10.1001/jamaneurol.2020.1264 PMID: 32453377
  159. Wagner KR, Kuntz NL, Koenig E, et al. Safety, tolerability, and pharmacokinetics of casimersen in patients with D uchenne muscular dystrophy amenable to exon 45 skipping: A randomized, double‐blind, placebo‐controlled, dose‐titration trial. Muscle Nerve 2021; 64(3): 285-92. doi: 10.1002/mus.27347 PMID: 34105177
  160. Group VS. A randomized controlled clinical trial of intravitreous fomivirsen for treatment of newly diagnosed peripheral cytomegalovirus retinitis in patients with AIDS. Am J Ophthalmol 2002; 133(4): 467-74. PMID: 11931780
  161. Mendell JR, Rodino-Klapac LR, Sahenk Z, et al. Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann Neurol 2013; 74(5): 637-47. doi: 10.1002/ana.23982 PMID: 23907995
  162. Adams D, Gonzalez-Duarte A, O’Riordan WD, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 2018; 379(1): 11-21. doi: 10.1056/NEJMoa1716153 PMID: 29972753
  163. Santos RD, Raal FJ, Donovan JM, Cromwell WC. Mipomersen preferentially reduces small low-density lipoprotein particle number in patients with hypercholesterolemia. J Clin Lipidol 2015; 9(2): 201-9. doi: 10.1016/j.jacl.2014.12.008 PMID: 25911076
  164. Lamb YN. Inclisiran: First approval. Drugs 2021; 81(3): 389-95. doi: 10.1007/s40265-021-01473-6 PMID: 33620677
  165. Lee TB, Yang K, Ko HJ, et al. Successful defibrotide treatment of a patient with veno-occlusive disease after living-donor liver transplantation. Medicine 2021; 100(25): e26463. doi: 10.1097/MD.0000000000026463 PMID: 34160449
  166. Richardson PG, Smith AR, Triplett BM, et al. Defibrotide for patients with hepatic veno-occlusive disease/sinusoidal obstruction syndrome: interim results from a treatment IND study. Biol Blood Marrow Transplant 2017; 23(6): 997-1004. doi: 10.1016/j.bbmt.2017.03.008 PMID: 28285079
  167. Liebow A, Li X, Racie T, et al. An investigational RNAi therapeutic targeting glycolate oxidase reduces oxalate production in models of primary hyperoxaluria. J Am Soc Nephrol 2017; 28(2): 494-503. doi: 10.1681/ASN.2016030338 PMID: 27432743
  168. Kim J, Hu C, Moufawad El Achkar C, et al. Patient-customized oligonucleotide therapy for a rare genetic disease. N Engl J Med 2019; 381(17): 1644-52. doi: 10.1056/NEJMoa1813279 PMID: 31597037
  169. Gragoudas ES, Adamis AP, Cunningham ET Jr, Feinsod M, Guyer DR. Pegaptanib for neovascular age-related macular degeneration. N Engl J Med 2004; 351(27): 2805-16. doi: 10.1056/NEJMoa042760 PMID: 15625332
  170. Balwani M, Sardh E, Ventura P, et al. Phase 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria. N Engl J Med 2020; 382(24): 2289-301. doi: 10.1056/NEJMoa1913147 PMID: 32521132
  171. Szcześniak MW, Deorowicz S, Gapski J, Kaczyński Ł, Makałowska I. miRNEST database: An integrative approach in microRNA search and annotation. Nucleic Acids Res 2012; 40(D1): D198-204. doi: 10.1093/nar/gkr1159 PMID: 22135287
  172. Liu H, Jin T, Liao R, et al. miRFANs: an integrated database for Arabidopsis thalianamicroRNA function annotations. BMC Plant Biol 2012; 12(1): 68. doi: 10.1186/1471-2229-12-68 PMID: 22583976
  173. Piriyapongsa J, Bootchai C, Ngamphiw C, Tongsima S. micro-PIR2: a comprehensive database for human-mouse comparative study of microRNA-promoter interactions. Database 2014; 2014(0): bau115. doi: 10.1093/database/bau115 PMID: 25425035
  174. Ritchie W, Flamant S, Rasko JEJ. mimiRNA: a microRNA expression profiler and classification resource designed to identify functional correlations between microRNAs and their targets. Bioinformatics 2010; 26(2): 223-7. doi: 10.1093/bioinformatics/btp649 PMID: 19933167
  175. Andrés-León E, González Peña D, Gómez-López G, Pisano DG. miRGate: a curated database of human, mouse and rat miRNA–mRNA targets. Database 2015; 2015: bav035. doi: 10.1093/database/bav035 PMID: 25858286
  176. Fromm B, Billipp T, Peck LE, et al. A Uniform System for the Annotation of Vertebrate microRNA Genes and the Evolution of the Human microRNAome. Annu Rev Genet 2015; 49(1): 213-42. doi: 10.1146/annurev-genet-120213-092023 PMID: 26473382
  177. Wang D, Gu J, Wang T, Ding Z, Oncomi RDB. OncomiRDB: a database for the experimentally verified oncogenic and tumor-suppressive microRNAs. Bioinformatics 2014; 30(15): 2237-8. doi: 10.1093/bioinformatics/btu155 PMID: 24651967
  178. Ruepp A, Kowarsch A, Schmidl D, et al. PhenomiR: A knowledgebase for microRNA expression in diseases and biological processes. Genome Biol 2010; 11(1): R6-6. doi: 10.1186/gb-2010-11-1-r6 PMID: 20089154
  179. Liu J, Liu X, Zhang S, et al. TarDB: An online database for plant miRNA targets and miRNA-triggered phased siRNAs. BMC Genomics 2021; 22(1): 348. doi: 10.1186/s12864-021-07680-5 PMID: 33985427
  180. Hackenberg M, Sturm M, Langenberger D, Falcón-Pérez JM, Aransay AM. miRanalyzer: A microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res 2009; 37 (Suppl. 2): W68-76. doi: 10.1093/nar/gkp347 PMID: 19433510
  181. Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP. Vertebrate microRNA genes. Science 2003; 299(5612): 1540-0. doi: 10.1126/science.1080372 PMID: 12624257
  182. Yang X, Li L. miRDeep-P: A computational tool for analyzing the microRNA transcriptome in plants. Bioinformatics 2011; 27(18): 2614-5. doi: 10.1093/bioinformatics/btr430 PMID: 21775303
  183. Washietl S, Hofacker IL, Stadler PF. Fast and reliable prediction of noncoding RNAs. Proc Natl Acad Sci USA 2005; 102(7): 2454-9. doi: 10.1073/pnas.0409169102 PMID: 15665081
  184. Kadri S, Hinman V, Benos PV. HHMMiR: efficient de novo prediction of microRNAs using hierarchical hidden Markov models. BMC Bioinformatics 2009; 10 (Suppl. 1): S35. doi: 10.1186/1471-2105-10-S1-S35 PMID: 19208136
  185. Stegmayer G, Yones C, Kamenetzky L, Milone DH. High class-imbalance in pre-miRNA prediction: A novel approach based on deepSOM. IEEE/ACM Trans Comput Biol Bioinform 2016; 14(6): 1316-26. doi: 10.1109/TCBB.2016.2576459
  186. Gkirtzou K, Tsamardinos I, Tsakalides P, Poirazi P. MatureBayes: A probabilistic algorithm for identifying the mature miRNA within novel precursors. PLoS One 2010; 5(8): e11843. doi: 10.1371/journal.pone.0011843 PMID: 20700506
  187. Jha A, Shankar R. miReader: Discovering novel miRNAs in species without sequenced genome. PLoS One 2013; 8(6): e66857. doi: 10.1371/journal.pone.0066857 PMID: 23805282
  188. Bandyopadhyay S, Bhattacharyya M. PuTmiR: A database for extracting neighboring transcription factors of human microRNAs. BMC Bioinformatics 2010; 11(1): 190. doi: 10.1186/1471-2105-11-190 PMID: 20398296
  189. Ronen R, Gan I, Modai S, et al. miRNAkey: a software for microRNA deep sequencing analysis. Bioinformatics 2010; 26(20): 2615-6. doi: 10.1093/bioinformatics/btq493 PMID: 20801911
  190. Shi J, Dong M, Li L, et al. mirPRo–a novel standalone program for differential expression and variation analysis of miRNAs. Sci Rep 2015; 5(1): 14617. doi: 10.1038/srep14617 PMID: 26434581
  191. Wu J, Liu Q, Wang X, et al. mirTools 2.0 for non-coding RNA discovery, profiling, and functional annotation based on high-throughput sequencing. RNA Biol 2013; 10(7): 1087-92. doi: 10.4161/rna.25193 PMID: 23778453
  192. Zhao W, Liu W, Tian D, et al. wapRNA: a web-based application for the processing of RNA sequences. Bioinformatics 2011; 27(21): 3076-7. doi: 10.1093/bioinformatics/btr504 PMID: 21896507
  193. Fahlgren N, Carrington JC. miRNA target prediction in plants, in Plant MicroRNAs. Springer 2010; pp. 51-7.
  194. Shirdel EA, Xie W, Mak TW, Jurisica I. NAViGaTing the micronome--using multiple microRNA prediction databases to identify signalling pathway-associated microRNAs. PLoS One 2011; 6(2): e17429. doi: 10.1371/journal.pone.0017429 PMID: 21364759
  195. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120(1): 15-20. doi: 10.1016/j.cell.2004.12.035 PMID: 15652477
  196. Hsu SD, Lin FM, Wu WY, et al. miRTarBase: a database curates experimentally validated microRNA–target interactions. Nucleic Acids Res 2011; 39 (Suppl. 1): D163-9. doi: 10.1093/nar/gkq1107 PMID: 21071411
  197. Dweep H, Sticht C, Pandey P, Gretz N. miRWalk – Database: Prediction of possible miRNA binding sites by "walking" the genes of three genomes. J Biomed Inform 2011; 44(5): 839-47. doi: 10.1016/j.jbi.2011.05.002 PMID: 21605702
  198. Ahadi A, Sablok G, Hutvagner G. miRTar2GO: a novel rule-based model learning method for cell line specific microRNA target prediction that integrates Ago2 CLIP-Seq and validated microRNA–target interaction data. Nucleic Acids Res 2017; 45(6): e42-2. doi: 10.1093/nar/gkw1185 PMID: 27903911
  199. Krek A, Grün D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet 2005; 37(5): 495-500. doi: 10.1038/ng1536 PMID: 15806104
  200. Loher P, Rigoutsos I. Interactive exploration of RNA22 microRNA target predictions. Bioinformatics 2012; 28(24): 3322-3. doi: 10.1093/bioinformatics/bts615 PMID: 23074262
  201. Coronnello C, Benos PV, Comi R. ComiR: Combinatorial microRNA target prediction tool. Nucleic Acids Res 2013; 41: W159-64. PMID: 23703208
  202. Ahmadi H, Ahmadi A, Azimzadeh-Jamalkandi S, et al. HomoTarget: A new algorithm for prediction of microRNA targets in Homo sapiens. Genomics 2013; 101(2): 94-100. doi: 10.1016/j.ygeno.2012.11.005 PMID: 23174671
  203. Thadani R, Tammi MT. MicroTar: Predicting microRNA targets from RNA duplexes. BMC Bioinformatics 2006; 7 (Suppl. 5): S20-0. doi: 10.1186/1471-2105-7-S5-S20
  204. Quillet A, Saad C, Ferry G, et al. Improving bioinformatics prediction of microRNA targets by ranks aggregation. Front Genet 2020; 10: 1330. doi: 10.3389/fgene.2019.01330 PMID: 32047509
  205. Friedman Y, Karsenty S, Linial M. miRror-Suite: decoding coordinated regulation by microRNAs. Database 2014; 2014(0): bau043. doi: 10.1093/database/bau043 PMID: 24907353
  206. Ding J, Li X, Hu H. TarPmiR: a new approach for microRNA target site prediction. Bioinformatics 2016; 32(18): 2768-75. doi: 10.1093/bioinformatics/btw318 PMID: 27207945
  207. Chae H, Rhee S, Nephew KP, Kim S. BioVLAB-MMIA-NGS: microRNA–mRNA integrated analysis using high-throughput sequencing data. Bioinformatics 2015; 31(2): 265-7. doi: 10.1093/bioinformatics/btu614 PMID: 25270639
  208. Ji BY, Pan LR, Zhou JR, You ZH, Peng SL. SMMDA: Predicting miRNA-Disease associations by incorporating multiple similarity profiles and a novel disease representation. Biology 2022; 11(5): 777. doi: 10.3390/biology11050777 PMID: 35625505
  209. Wong NW, Chen Y, Chen S, Wang X. OncomiR: An online resource for exploring pan-cancer microRNA dysregulation. Bioinformatics 2018; 34(4): 713-5. doi: 10.1093/bioinformatics/btx627 PMID: 29028907
  210. Liu X, Wang S, Meng F, et al. SM2miR: A database of the experimentally validated small molecules’ effects on microRNA expression. Bioinformatics 2013; 29(3): 409-11. doi: 10.1093/bioinformatics/bts698 PMID: 23220571
  211. Vlachos IS, Zagganas K, Paraskevopoulou MD, et al. DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res 2015; 43(W1): W460-6. doi: 10.1093/nar/gkv403 PMID: 25977294
  212. Jiang Q, Wang Y, Hao Y, et al. miR2Disease: A manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 2009; 37: D98-D104. doi: 10.1093/nar/gkn714 PMID: 18927107
  213. Zhang S, Yue Y, Sheng L, et al. PASmiR: a literature-curated database for miRNA molecular regulation in plant response to abiotic stress. BMC Plant Biol 2013; 13(1): 33. doi: 10.1186/1471-2229-13-33 PMID: 23448274
  214. Preusse M, Theis FJ, Mueller NS. miTALOS v2: Analyzing tissue specific microRNA function. PLoS One 2016; 11(3): e0151771. doi: 10.1371/journal.pone.0151771 PMID: 26998997
  215. Vitsios DM, Enright AJ. Chimira: analysis of small RNA sequencing data and microRNA modifications. Bioinformatics 2015; 31(20): 3365-7. doi: 10.1093/bioinformatics/btv380 PMID: 26093149
  216. Fehlmann T, Ludwig N, Backes C, Meese E, Keller A. Distribution of microRNA biomarker candidates in solid tissues and body fluids. RNA Biol 2016; 13(11): 1084-8. doi: 10.1080/15476286.2016.1234658 PMID: 27687236
  217. Kim J, Levy E, Ferbrache A, et al. MAGI: a Node.js web service for fast microRNA-Seq analysis in a GPU infrastructure. Bioinformatics 2014; 30(19): 2826-7. doi: 10.1093/bioinformatics/btu377 PMID: 24907367
  218. Müller S, Rycak L, Winter P, Kahl G, Koch I, Rotter B. omiRas: a Web server for differential expression analysis of miRNAs derived from small RNA-Seq data. Bioinformatics 2013; 29(20): 2651-2. doi: 10.1093/bioinformatics/btt457 PMID: 23946503
  219. Fasold M, Langenberger D, Binder H, Stadler PF, Hoffmann S. DARIO: a ncRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res 2011; 39: W112-W11. doi: 10.1093/nar/gkr357
  220. Monfort-Lanzas P, Gronauer R, Madersbacher L, Schatz C, Rieder D, Hackl H. MIO: microRNA target analysis system for immuno-oncology. Bioinformatics 2022; 38(14): 3665-7. doi: 10.1093/bioinformatics/btac366 PMID: 35642895
  221. Ichihara M, Murakumo Y, Masuda A, et al. Thermodynamic instability of siRNA duplex is a prerequisite for dependable prediction of siRNA activities. Nucleic Acids Res 2007; 35(18): e123. doi: 10.1093/nar/gkm699 PMID: 17884914
  222. Yamasaki C, Murakami K, Fujii Y, et al. The H-Invitational Database (H-InvDB), a comprehensive annotation resource for human genes and transcripts. Nucleic Acids Res 2008; 36: D793-9. PMID: 18089548
  223. Cabili MN, Trapnell C, Goff L, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 2011; 25(18): 1915-27. doi: 10.1101/gad.17446611 PMID: 21890647
  224. Ma L, Cao J, Liu L, et al. LncBook: a curated knowledgebase of human long non-coding RNAs. Nucleic Acids Res 2019; 47(D1): D128-34. doi: 10.1093/nar/gky960 PMID: 30329098
  225. Dinger ME, Pang KC, Mercer TR, Crowe ML, Grimmond SM, Mattick JS. NRED: A database of long noncoding RNA expression. Nucleic Acids Res 2009; 37 (Suppl. 1): D122-6. doi: 10.1093/nar/gkn617 PMID: 18829717

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers