Representation Learning of Biological Concepts: A Systematic Review


Cite item

Full Text

Abstract

Objective:Representation learning in the context of biological concepts involves acquiring their numerical representations through various sources of biological information, such as sequences, interactions, and literature. This study has conducted a comprehensive systematic review by analyzing both quantitative and qualitative data to provide an overview of this field.

Methods:Our systematic review involved searching for articles on the representation learning of biological concepts in PubMed and EMBASE databases. Among the 507 articles published between 2015 and 2022, we carefully screened and selected 65 papers for inclusion. We then developed a structured workflow that involved identifying relevant biological concepts and data types, reviewing various representation learning techniques, and evaluating downstream applications for assessing the quality of the learned representations.

Results:The primary focus of this review was on the development of numerical representations for gene/DNA/RNA entities. We have found Word2Vec to be the most commonly used method for biological representation learning. Moreover, several studies are increasingly utilizing state-of-the-art large language models to learn numerical representations of biological concepts. We also observed that representations learned from specific sources were typically used for single downstream applications that were relevant to the source.

Conclusion:Existing methods for biological representation learning are primarily focused on learning representations from a single data type, with the output being fed into predictive models for downstream applications. Although there have been some studies that have explored the use of multiple data types to improve the performance of learned representations, such research is still relatively scarce. In this systematic review, we have provided a summary of the data types, models, and downstream applications used in this task.

About the authors

Yuntao Yang

School of Biomedical Informatics, The University of Texas Health Science Center at Houston

Email: info@benthamscience.net

Xu Zuo

School of Biomedical Informatics, The University of Texas Health Science Center at Houston

Email: info@benthamscience.net

Avisha Das

School of Biomedical Informatics, The University of Texas Health Science Center at Houston

Email: info@benthamscience.net

Hua Xu

School of Biomedical Informatics, The University of Texas Health Science Center at Houston

Email: info@benthamscience.net

Wenjin Zheng

School of Biomedical Informatics, The University of Texas Health Science Center at Houston

Author for correspondence.
Email: info@benthamscience.net

References

  1. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521(7553): 436-44.
  2. Fakoor R, Ladhak F, Nazi A, Huber M, Eds. Using deep learning to enhance cancer diagnosis and classification. Proceedings of the international conference on machine learning:. New York. 2013; pp. 3937-49.
  3. Lyons J, Dehzangi A, Heffernan R, et al. Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network. J Comput Chem 2014; 35(28): 2040-6. doi: 10.1002/jcc.23718 PMID: 25212657
  4. Zeng H, Edwards MD, Liu G, Gifford DK. Convolutional neural network architectures for predicting DNA–protein binding. Bioinformatics 2016; 32(12): i121-7. doi: 10.1093/bioinformatics/btw255 PMID: 27307608
  5. Tange HJ, Schouten HC, Kester ADM, Hasman A. The granularity of medical narratives and its effect on the speed and completeness of information retrieval. J Am Med Inform Assoc 1998; 5(6): 571-82. doi: 10.1136/jamia.1998.0050571 PMID: 9824804
  6. Wijaya CY. 4 Categorical Encoding Concepts to Know for Data Scientists 2021. Available from: https://towardsdatascience.com/4-categorical-encoding-concepts-to-know-for-data-scientists-e144851c6383
  7. Firth J. A synopsis of linguistic theory, 1930-1955. In:In Studies in Linguistic Analysis. Oxford: Blackwell 1957; pp. 10-32.
  8. Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman R. Indexing by latent semantic analysis. J Am Soc Inf Sci 1990; 41(6): 391-407. doi: 10.1002/(SICI)1097-4571(199009)41:63.0.CO;2-9
  9. Landauer TK, Dumais ST. A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychol Rev 1997; 104(2): 211-40. doi: 10.1037/0033-295X.104.2.211
  10. Dumais ST. Latent semantic analysis. Annu Rev Inform Sci Tech 2004; 38(1): 188-230. doi: 10.1002/aris.1440380105
  11. Li G, Du X, Li X, Zou L, Zhang G, Wu Z. Prediction of DNA binding proteins using local features and long-term dependencies with primary sequences based on deep learning. PeerJ 2021; 9: e11262. doi: 10.7717/peerj.11262 PMID: 33986992
  12. Hofmann T. Unsupervised learning by probabilistic latent semantic analysis. Mach Learn 2001; 42(1/2): 177-96. doi: 10.1023/A:1007617005950
  13. Cohen T, Widdows D. Empirical distributional semantics: Methods and biomedical applications. J Biomed Inform 2009; 42(2): 390-405. doi: 10.1016/j.jbi.2009.02.002 PMID: 19232399
  14. Tsoi LC, Boehnke M, Klein RL, Zheng WJ. Evaluation of genome-wide association study results through development of ontology fingerprints. Bioinformatics 2009; 25(10): 1314-20. doi: 10.1093/bioinformatics/btp158 PMID: 19349285
  15. Qin T, Matmati N, Tsoi LC, Mohanty BK, Gao N, Tang J. Finding pathway-modulating genes from a novel Ontology Fingerprint-derived gene network. Nucleic Acids Res 2014; 42(18): e138. doi: 10.1093/nar/gku678
  16. Aizawa A. An information-theoretic perspective of tf–idf measures. Inf Process Manage 2003; 39(1): 45-65. doi: 10.1016/S0306-4573(02)00021-3
  17. Pennington J, Socher R, Manning CD, Eds. Glove: Global vectors for word representation. Proceedings of the 2014 conference onempirical methods in natural language processing (EMNLP):. Doha, Qatar 2014; pp. 1532-43. doi: 10.3115/v1/D14-1162
  18. Guthrie D, Allison B, Liu W, Guthrie L, Wilks Y, Eds. A closer look at skip-gram modelling. LREC; Genoa, Italy 2006; pp. 1222-5.
  19. Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv:13013781 2013.
  20. Bojanowski P, Grave E, Joulin A, Mikolov T. Enriching word vectors with subword information. Trans Assoc Comput Linguist 2017; 5: 135-46. doi: 10.1162/tacl_a_00051
  21. Peters M, Neumann M, Iyyer M, Gardner M, Clark C, Lee K. Deep contextualized word representations. arXiv:180205365 2018. doi: 10.18653/v1/N18-1202
  22. Devlin J, Chang M-W, Lee K, Toutanova K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:181004805 2018.
  23. Le Q, Mikolov T. Distributed representations of sentences and documents. arXiv:14054053 2014.
  24. Wu L, Fisch A, Chopra S, Adams K, Bordes A, Weston J,, Eds. Starspace: Embed all the things! Proceedings of the AAAI conference on artificial intelligence;. New Orleans, USA. 2018.
  25. Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q, Eds. Line: Large-scale information network embedding. Proceedings of the 24th international conference on world wide web:. Florence, Italy. 2018; pp. 1067-77. doi: 10.1145/2736277.2741093
  26. Grover A, Leskovec J. Eds. node2vec: Scalable feature learning for networks. Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining;. California, USA 2016; pp. 855-64. doi: 10.1145/2939672.2939754
  27. Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. arXiv:160902907 2016.
  28. Le NQK, Ho QT, Nguyen TTD, Ou YY. A transformer architecture based on BERT and 2D convolutional neural network to identify DNA enhancers from sequence information. Brief Bioinform 2021; 22(5): bbab005. doi: 10.1093/bib/bbab005 PMID: 33539511
  29. Charoenkwan P, Nantasenamat C, Hasan MM, Manavalan B, Shoombuatong W. BERT4Bitter: A bidirectional encoder representations from transformers (BERT)-based model for improving the prediction of bitter peptides. Bioinformatics 2021; 37(17): 2556-62. doi: 10.1093/bioinformatics/btab133 PMID: 33638635
  30. Li K, Zhong Y, Lin X, Quan Z. Predicting the disease risk of protein mutation sequences with pre-training model. Front Genet 2020; 11: 605620. doi: 10.3389/fgene.2020.605620 PMID: 33408741
  31. Zhang W, Xue Z, Li Z, Yin H. DCE-DForest: A deep forest model for the prediction of anticancer drug combination effects. Comput Math Methods Med 2022; 2022: 8693746.
  32. Yuan H, Kshirsagar M, Zamparo L, Lu Y, Leslie CS. BindSpace decodes transcription factor binding signals by large-scale sequence embedding. Nat Methods 2019; 16(9): 858-61. doi: 10.1038/s41592-019-0511-y PMID: 31406384
  33. Yang KK, Wu Z, Bedbrook CN, Arnold FH. Learned protein embeddings for machine learning. Bioinformatics 2018; 34(15): 2642-8. doi: 10.1093/bioinformatics/bty178 PMID: 29584811
  34. Zou Q, Xing P, Wei L, Liu B. Gene2vec: Gene subsequence embedding for prediction of mammalian N6 -methyladenosine sites from mRNA. RNA 2019; 25(2): 205-18. doi: 10.1261/rna.069112.118 PMID: 30425123
  35. Zeng W, Wu M, Jiang R. Prediction of enhancer-promoter interactions via natural language processing. BMC Genomics 2018; 19(S2): 84. doi: 10.1186/s12864-018-4459-6 PMID: 29764360
  36. Wang Y, You ZH, Yang S, Li X, Jiang TH, Zhou X. A high efficient biological language model for predicting protein–protein interactions. Cells 2019; 8(2): 122. doi: 10.3390/cells8020122 PMID: 30717470
  37. Woloszynek S, Zhao Z, Chen J, Rosen GL. 16S rRNA sequence embeddings: Meaningful numeric feature representations of nucleotide sequences that are convenient for downstream analyses. PLOS Comput Biol 2019; 15(2): e1006721. doi: 10.1371/journal.pcbi.1006721 PMID: 30807567
  38. ÖZCAN ŞN, Özgür A, Gürgen F. Statistical representation models for mutation information within genomic data. BMC Bioinformatics 2019; 20(1): 1-13. PMID: 30606105
  39. Wu C, Gao R, Zhang Y, De Marinis Y. PTPD: Predicting therapeutic peptides by deep learning and word2vec. BMC Bioinformatics 2019; 20(1): 456. doi: 10.1186/s12859-019-3006-z PMID: 31492094
  40. Nguyen TTD, Le NQK, Ho QT, Phan DV, Ou YY. Using word embedding technique to efficiently represent protein sequences for identifying substrate specificities of transporters. Anal Biochem 2019; 577: 73-81. doi: 10.1016/j.ab.2019.04.011 PMID: 31022378
  41. Asgari E, McHardy AC, Mofrad MRK. Probabilistic variable-length segmentation of protein sequences for discriminative motif discovery (DiMotif) and sequence embedding (ProtVecX). Sci Rep 2019; 9(1): 3577. doi: 10.1038/s41598-019-38746-w PMID: 30837494
  42. Aoki G, Sakakibara Y. Convolutional neural networks for classification of alignments of non-coding RNA sequences. Bioinformatics 2018; 34(13): i237-44. doi: 10.1093/bioinformatics/bty228 PMID: 29949978
  43. Pan X, Zuallaert J, Wang X, et al. ToxDL: Deep learning using primary structure and domain embeddings for assessing protein toxicity. Bioinformatics 2021; 36(21): 5159-68. doi: 10.1093/bioinformatics/btaa656 PMID: 32692832
  44. Yang S, Liu X, Ng RT. ProbeRating: A recommender system to infer binding profiles for nucleic acid-binding proteins. Bioinformatics 2020; 36(18): 4797-804. doi: 10.1093/bioinformatics/btaa580 PMID: 32573679
  45. Xie W, Luo J, Pan C, Liu Y. SG-LSTM-FRAME: A computational frame using sequence and geometrical information via LSTM to predict miRNA–gene associations. Brief Bioinform 2021; 22(2): 2032-42. doi: 10.1093/bib/bbaa022 PMID: 32181478
  46. Chen Z, He N, Huang Y, Qin WT, Liu X, Li L. Integration of a deep learning classifier with a random forest approach for predicting malonylation sites. Genom Proteom Bioinform 2018; 16(6): 451-9. doi: 10.1016/j.gpb.2018.08.004 PMID: 30639696
  47. Yang S, Wang Y, Lin Y, Shao D, He K, Huang L. LncMirNet: Predicting LncRNA–miRNA interaction based on deep learning of ribonucleic acid sequences. Molecules 2020; 25(19): 4372. doi: 10.3390/molecules25194372 PMID: 32977679
  48. Asgari E, Mofrad MRK. Continuous distributed representation of biological sequences for deep proteomics and genomics. PLoS One 2015; 10(11): e0141287. doi: 10.1371/journal.pone.0141287 PMID: 26555596
  49. Khanal J, Tayara H, Zou Q, Chong KT. Identifying DNA N4-methylcytosine sites in the rosaceae genome with a deep learning model relying on distributed feature representation. Comput Struct Biotechnol J 2021; 19: 1612-9. doi: 10.1016/j.csbj.2021.03.015 PMID: 33868598
  50. Xu B, Tan Z, Li K, Jiang T, Peng Y. Predicting the host of influenza viruses based on the word vector. PeerJ 2017; 5: e3579. doi: 10.7717/peerj.3579 PMID: 28729956
  51. Zeng M, Wu Y, Lu C, Zhang F, Wu FX, Li M. DeepLncLoc: A deep learning framework for long non-coding RNA subcellular localization prediction based on subsequence embedding. Brief Bioinform 2022; 23(1): bbab360. doi: 10.1093/bib/bbab360 PMID: 34498677
  52. Wang Z, Lei X. Prediction of RBP binding sites on circRNAs using an LSTM-based deep sequence learning architecture. Brief Bioinform 2021; 22(6): bbab342. doi: 10.1093/bib/bbab342 PMID: 34415289
  53. Ostrovsky-Berman M, Frankel B, Polak P, Yaari G. Immune2vec: Embedding B/T cell receptor sequences in N using natural language processing. Front Immunol 2021; 12: 680687. doi: 10.3389/fimmu.2021.680687 PMID: 34367141
  54. Heinzinger M, Elnaggar A, Wang Y, et al. Modeling aspects of the language of life through transfer-learning protein sequences. BMC Bioinformatics 2019; 20(1): 723. doi: 10.1186/s12859-019-3220-8 PMID: 31847804
  55. Liu XQ, Li BX, Zeng GR, Liu QY, Ai DM. Prediction of long non-coding RNAs based on deep learning. Genes 2019; 10(4): 273. doi: 10.3390/genes10040273 PMID: 30987229
  56. Chen Z-H, You Z-H, Zhang W-B, Wang Y-B, Cheng L, Alghazzawi D. Global vectors representation of protein sequences and its application for predicting self-interacting proteins with multi-grained cascade forest model. Genes 2019; 10(11): 924. doi: 10.3390/genes10110924 PMID: 31726752
  57. Vang YS, Xie X. HLA class I binding prediction via convolutional neural networks. Bioinformatics 2017; 33(17): 2658-65. doi: 10.1093/bioinformatics/btx264 PMID: 28444127
  58. Min X, Zeng W, Chen N, Chen T, Jiang R. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding. Bioinformatics 2017; 33(14): i92-i101. doi: 10.1093/bioinformatics/btx234 PMID: 28881969
  59. Hong J, Gao R, Yang Y. CrepHAN: Cross-species prediction of enhancers by using hierarchical attention networks. Bioinformatics 2021; 37(20): 3436-43. doi: 10.1093/bioinformatics/btab349 PMID: 33978703
  60. Jin Y, Lu J, Shi R, Yang Y. EmbedDTI: Enhancing the molecular representations via sequence embedding and graph convolutional network for the prediction of drug-target interaction. Biomolecules 2021; 11(12): 1783. doi: 10.3390/biom11121783 PMID: 34944427
  61. Hou WJ, Ceesay B. Extraction of drug–drug interaction using neural embedding. J Bioinform Comput Biol 2018; 16(6): 1840027. doi: 10.1142/S0219720018400279 PMID: 30567477
  62. Chen Q, Lee K, Yan S, Kim S, Wei CH, Lu Z. BioConceptVec: Creating and evaluating literature-based biomedical concept embeddings on a large scale. PLOS Comput Biol 2020; 16(4): e1007617. doi: 10.1371/journal.pcbi.1007617 PMID: 32324731
  63. You R, Huang X, Zhu S. DeepText2GO: Improving large-scale protein function prediction with deep semantic text representation. Methods 2018; 145: 82-90. doi: 10.1016/j.ymeth.2018.05.026 PMID: 29883746
  64. Patrick MT, Raja K, Miller K, et al. Drug repurposing prediction for immune-mediated cutaneous diseases using a word-embedding–based machine learning approach. J Invest Dermatol 2019; 139(3): 683-91. doi: 10.1016/j.jid.2018.09.018 PMID: 30342048
  65. Du J, Jia P, Dai Y, Tao C, Zhao Z, Zhi D. Gene2vec: Distributed representation of genes based on co-expression. BMC Genomics 2019; 20(S1): 82. doi: 10.1186/s12864-018-5370-x PMID: 30712510
  66. Choi J, Oh I, Seo S, Ahn J. G2Vec: Distributed gene representations for identification of cancer prognostic genes. Sci Rep 2018; 8(1): 13729. doi: 10.1038/s41598-018-32180-0 PMID: 30213980
  67. Dai W, Chang Q, Peng W, Zhong J, Li Y. Network embedding the protein–protein interaction network for human essential genes identification. Genes 2020; 11(2): 153. doi: 10.3390/genes11020153 PMID: 32023848
  68. Alachram H, Chereda H, Beißbarth T, Wingender E, Stegmaier P. Text mining-based word representations for biomedical data analysis and protein-protein interaction networks in machine learning tasks. PLoS One 2021; 16(10): e0258623. doi: 10.1371/journal.pone.0258623 PMID: 34653224
  69. Yang K, Wang R, Liu G, et al. HerGePred: heterogeneous network embedding representation for disease gene prediction. IEEE J Biomed Health Inform 2019; 23(4): 1805-15. doi: 10.1109/JBHI.2018.2870728 PMID: 31283472
  70. Chen L, Zhang YH, Huang G, Pan X, Huang T, Cai YD. Inferring novel genes related to oral cancer with a network embedding method and one-class learning algorithms. Gene Ther 2019; 26(12): 465-78. doi: 10.1038/s41434-019-0099-y PMID: 31455874
  71. Xiao Z, Deng Y. Graph embedding-based novel protein interaction prediction via higher-order graph convolutional network. PLoS One 2020; 15(9): e0238915. doi: 10.1371/journal.pone.0238915 PMID: 32970681
  72. Zhang X, Xiao W, Xiao W, Deep HE. DeepHE: Accurately predicting human essential genes based on deep learning. PLOS Comput Biol 2020; 16(9): e1008229. doi: 10.1371/journal.pcbi.1008229 PMID: 32936825
  73. Pan X, Lu L, Cai YD. Predicting protein subcellular location with network embedding and enrichment features. Biochim Biophys Acta Proteins Proteomics 2020; 1868(10): 140477. doi: 10.1016/j.bbapap.2020.140477 PMID: 32593761
  74. Deepika SS, Geetha TV. A meta-learning framework using representation learning to predict drug-drug interaction. J Biomed Inform 2018; 84: 136-47. doi: 10.1016/j.jbi.2018.06.015 PMID: 29959033
  75. Devkota K, Murphy JM, Cowen LJ. GLIDE: Combining local methods and diffusion state embeddings to predict missing interactions in biological networks. Bioinformatics 2020; 36(S1): i464-73. doi: 10.1093/bioinformatics/btaa459 PMID: 32657369
  76. Zhang J, Jiang Z, Hu X, Song B. A novel graph attention adversarial network for predicting disease-related associations. Methods 2020; 179: 81-8. doi: 10.1016/j.ymeth.2020.05.010 PMID: 32446956
  77. Li J, Liu Y, Zhang Z, Liu B, Wang Y. PmDNE: Prediction of miRNA-disease association based on network embedding and network similarity analysis. Biomed Res Int 2020; 2020: 6248686. doi: 10.1155/2020/6248686
  78. Zhang HY, Wang L, You ZH, et al. iGRLCDA: identifying circRNA–disease association based on graph representation learning. Brief Bioinform 2022; 23(3): bbac083. doi: 10.1093/bib/bbac083 PMID: 35323894
  79. Li L, Wang YT, Ji CM, Zheng CH, Ni JC, Su YS. GCAEMDA: Predicting miRNA-disease associations via graph convolutional autoencoder. PLOS Comput Biol 2021; 17(12): e1009655. doi: 10.1371/journal.pcbi.1009655 PMID: 34890410
  80. Kang C, Zhang H, Liu Z, Huang S, Yin Y. LR-GNN: A graph neural network based on link representation for predicting molecular associations. Brief Bioinform 2022; 23(1): bbab513. doi: 10.1093/bib/bbab513 PMID: 34889446
  81. Lan W, Dong Y, Chen Q, et al. KGANCDA: Predicting circRNA-disease associations based on knowledge graph attention network. Brief Bioinform 2022; 23(1): bbab494. doi: 10.1093/bib/bbab494 PMID: 34864877
  82. Xuan P, Zhan L, Cui H, Zhang T, Nakaguchi T, Zhang W. Graph triple-attention network for disease-related lncRNA prediction. IEEE J Biomed Health Inform 2022; 26(6): 2839-49. doi: 10.1109/JBHI.2021.3130110 PMID: 34813484
  83. Bamunu Mudiyanselage T, Lei X, Senanayake N, Zhang Y, Pan Y. Predicting CircRNA disease associations using novel node classification and link prediction models on Graph Convolutional Networks. Methods 2022; 198: 32-44. doi: 10.1016/j.ymeth.2021.10.008 PMID: 34748953
  84. Choi W, Lee H. Identifying disease-gene associations using a convolutional neural network-based model by embedding a biological knowledge graph with entity descriptions. PLoS One 2021; 16(10): e0258626. doi: 10.1371/journal.pone.0258626 PMID: 34653225
  85. Zhao X, Zhao X, Yin M. Heterogeneous graph attention network based on meta-paths for lncRNA–disease association prediction. Brief Bioinform 2022; 23(1): bbab407. doi: 10.1093/bib/bbab407 PMID: 34585231
  86. Fan Y, Chen M, Pan X. GCRFLDA: scoring lncRNA-disease associations using graph convolution matrix completion with conditional random field. Brief Bioinform 2022; 23(1): bbab361. doi: 10.1093/bib/bbab361 PMID: 34486019
  87. Ashoor H, Chen X, Rosikiewicz W, et al. Graph embedding and unsupervised learning predict genomic sub-compartments from HiC chromatin interaction data. Nat Commun 2020; 11(1): 1173. doi: 10.1038/s41467-020-14974-x PMID: 32127534
  88. Wang J, Zhang J, Cai Y, Deng L. Deepmir2go: Inferring functions of human micrornas using a deep multi-label classification model. Int J Mol Sci 2019; 20(23): 6046. doi: 10.3390/ijms20236046 PMID: 31801264
  89. Li Y, Keqi W, Wang G. Evaluating disease similarity based on gene network reconstruction and representation. Bioinformatics 2021; 37(20): 3579-87. doi: 10.1093/bioinformatics/btab252 PMID: 33978702
  90. Kim S, Lee H, Kim K, Kang J. Mut2Vec: Distributed representation of cancerous mutations. BMC Med Genomics 2018; 11(S2): 33. doi: 10.1186/s12920-018-0349-7 PMID: 29697361
  91. Villegas-Morcillo A, Makrodimitris S, van Ham RCHJ, Gomez AM, Sanchez V, Reinders MJT. Unsupervised protein embeddings outperform hand-crafted sequence and structure features at predicting molecular function. Bioinformatics 2021; 37(2): 162-70. doi: 10.1093/bioinformatics/btaa701 PMID: 32797179
  92. Lu C, Zeng M, Wu FX, Li M, Wang J. Improving circRNA–disease association prediction by sequence and ontology representations with convolutional and recurrent neural networks. Bioinformatics 2021; 36(24): 5656-64. doi: 10.1093/bioinformatics/btaa1077 PMID: 33367690
  93. Hao J, Ju CJ-T, Chen M, Sun Y, Zaniolo C, Wang W, Eds. Biojoie: Joint representation learning of biological knowledge bases. Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. doi: 10.1145/3388440.3412477
  94. Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, et al. Language models are few-shot learners. Adv Neural Inf Process Syst 2020; 33: 1877-901.
  95. PubMedGPT 2.7B 2022. 2022. Available from: https://crfm.stanford.edu/2022/12/15/pubmedgpt.html

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers