Representation Learning of Biological Concepts: A Systematic Review
- Authors: Yang Y.1, Zuo X.1, Das A.1, Xu H.1, Zheng W.1
-
Affiliations:
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston
- Issue: Vol 19, No 1 (2024)
- Pages: 61-72
- Section: Life Sciences
- URL: https://jdigitaldiagnostics.com/1574-8936/article/view/643722
- DOI: https://doi.org/10.2174/1574893618666230612161210
- ID: 643722
Cite item
Full Text
Abstract
Objective:Representation learning in the context of biological concepts involves acquiring their numerical representations through various sources of biological information, such as sequences, interactions, and literature. This study has conducted a comprehensive systematic review by analyzing both quantitative and qualitative data to provide an overview of this field.
Methods:Our systematic review involved searching for articles on the representation learning of biological concepts in PubMed and EMBASE databases. Among the 507 articles published between 2015 and 2022, we carefully screened and selected 65 papers for inclusion. We then developed a structured workflow that involved identifying relevant biological concepts and data types, reviewing various representation learning techniques, and evaluating downstream applications for assessing the quality of the learned representations.
Results:The primary focus of this review was on the development of numerical representations for gene/DNA/RNA entities. We have found Word2Vec to be the most commonly used method for biological representation learning. Moreover, several studies are increasingly utilizing state-of-the-art large language models to learn numerical representations of biological concepts. We also observed that representations learned from specific sources were typically used for single downstream applications that were relevant to the source.
Conclusion:Existing methods for biological representation learning are primarily focused on learning representations from a single data type, with the output being fed into predictive models for downstream applications. Although there have been some studies that have explored the use of multiple data types to improve the performance of learned representations, such research is still relatively scarce. In this systematic review, we have provided a summary of the data types, models, and downstream applications used in this task.
About the authors
Yuntao Yang
School of Biomedical Informatics, The University of Texas Health Science Center at Houston
Email: info@benthamscience.net
Xu Zuo
School of Biomedical Informatics, The University of Texas Health Science Center at Houston
Email: info@benthamscience.net
Avisha Das
School of Biomedical Informatics, The University of Texas Health Science Center at Houston
Email: info@benthamscience.net
Hua Xu
School of Biomedical Informatics, The University of Texas Health Science Center at Houston
Email: info@benthamscience.net
Wenjin Zheng
School of Biomedical Informatics, The University of Texas Health Science Center at Houston
Author for correspondence.
Email: info@benthamscience.net
References
- LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521(7553): 436-44.
- Fakoor R, Ladhak F, Nazi A, Huber M, Eds. Using deep learning to enhance cancer diagnosis and classification. Proceedings of the international conference on machine learning:. New York. 2013; pp. 3937-49.
- Lyons J, Dehzangi A, Heffernan R, et al. Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network. J Comput Chem 2014; 35(28): 2040-6. doi: 10.1002/jcc.23718 PMID: 25212657
- Zeng H, Edwards MD, Liu G, Gifford DK. Convolutional neural network architectures for predicting DNAprotein binding. Bioinformatics 2016; 32(12): i121-7. doi: 10.1093/bioinformatics/btw255 PMID: 27307608
- Tange HJ, Schouten HC, Kester ADM, Hasman A. The granularity of medical narratives and its effect on the speed and completeness of information retrieval. J Am Med Inform Assoc 1998; 5(6): 571-82. doi: 10.1136/jamia.1998.0050571 PMID: 9824804
- Wijaya CY. 4 Categorical Encoding Concepts to Know for Data Scientists 2021. Available from: https://towardsdatascience.com/4-categorical-encoding-concepts-to-know-for-data-scientists-e144851c6383
- Firth J. A synopsis of linguistic theory, 1930-1955. In:In Studies in Linguistic Analysis. Oxford: Blackwell 1957; pp. 10-32.
- Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman R. Indexing by latent semantic analysis. J Am Soc Inf Sci 1990; 41(6): 391-407. doi: 10.1002/(SICI)1097-4571(199009)41:63.0.CO;2-9
- Landauer TK, Dumais ST. A solution to Platos problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychol Rev 1997; 104(2): 211-40. doi: 10.1037/0033-295X.104.2.211
- Dumais ST. Latent semantic analysis. Annu Rev Inform Sci Tech 2004; 38(1): 188-230. doi: 10.1002/aris.1440380105
- Li G, Du X, Li X, Zou L, Zhang G, Wu Z. Prediction of DNA binding proteins using local features and long-term dependencies with primary sequences based on deep learning. PeerJ 2021; 9: e11262. doi: 10.7717/peerj.11262 PMID: 33986992
- Hofmann T. Unsupervised learning by probabilistic latent semantic analysis. Mach Learn 2001; 42(1/2): 177-96. doi: 10.1023/A:1007617005950
- Cohen T, Widdows D. Empirical distributional semantics: Methods and biomedical applications. J Biomed Inform 2009; 42(2): 390-405. doi: 10.1016/j.jbi.2009.02.002 PMID: 19232399
- Tsoi LC, Boehnke M, Klein RL, Zheng WJ. Evaluation of genome-wide association study results through development of ontology fingerprints. Bioinformatics 2009; 25(10): 1314-20. doi: 10.1093/bioinformatics/btp158 PMID: 19349285
- Qin T, Matmati N, Tsoi LC, Mohanty BK, Gao N, Tang J. Finding pathway-modulating genes from a novel Ontology Fingerprint-derived gene network. Nucleic Acids Res 2014; 42(18): e138. doi: 10.1093/nar/gku678
- Aizawa A. An information-theoretic perspective of tfidf measures. Inf Process Manage 2003; 39(1): 45-65. doi: 10.1016/S0306-4573(02)00021-3
- Pennington J, Socher R, Manning CD, Eds. Glove: Global vectors for word representation. Proceedings of the 2014 conference onempirical methods in natural language processing (EMNLP):. Doha, Qatar 2014; pp. 1532-43. doi: 10.3115/v1/D14-1162
- Guthrie D, Allison B, Liu W, Guthrie L, Wilks Y, Eds. A closer look at skip-gram modelling. LREC; Genoa, Italy 2006; pp. 1222-5.
- Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv:13013781 2013.
- Bojanowski P, Grave E, Joulin A, Mikolov T. Enriching word vectors with subword information. Trans Assoc Comput Linguist 2017; 5: 135-46. doi: 10.1162/tacl_a_00051
- Peters M, Neumann M, Iyyer M, Gardner M, Clark C, Lee K. Deep contextualized word representations. arXiv:180205365 2018. doi: 10.18653/v1/N18-1202
- Devlin J, Chang M-W, Lee K, Toutanova K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:181004805 2018.
- Le Q, Mikolov T. Distributed representations of sentences and documents. arXiv:14054053 2014.
- Wu L, Fisch A, Chopra S, Adams K, Bordes A, Weston J,, Eds. Starspace: Embed all the things! Proceedings of the AAAI conference on artificial intelligence;. New Orleans, USA. 2018.
- Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q, Eds. Line: Large-scale information network embedding. Proceedings of the 24th international conference on world wide web:. Florence, Italy. 2018; pp. 1067-77. doi: 10.1145/2736277.2741093
- Grover A, Leskovec J. Eds. node2vec: Scalable feature learning for networks. Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining;. California, USA 2016; pp. 855-64. doi: 10.1145/2939672.2939754
- Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. arXiv:160902907 2016.
- Le NQK, Ho QT, Nguyen TTD, Ou YY. A transformer architecture based on BERT and 2D convolutional neural network to identify DNA enhancers from sequence information. Brief Bioinform 2021; 22(5): bbab005. doi: 10.1093/bib/bbab005 PMID: 33539511
- Charoenkwan P, Nantasenamat C, Hasan MM, Manavalan B, Shoombuatong W. BERT4Bitter: A bidirectional encoder representations from transformers (BERT)-based model for improving the prediction of bitter peptides. Bioinformatics 2021; 37(17): 2556-62. doi: 10.1093/bioinformatics/btab133 PMID: 33638635
- Li K, Zhong Y, Lin X, Quan Z. Predicting the disease risk of protein mutation sequences with pre-training model. Front Genet 2020; 11: 605620. doi: 10.3389/fgene.2020.605620 PMID: 33408741
- Zhang W, Xue Z, Li Z, Yin H. DCE-DForest: A deep forest model for the prediction of anticancer drug combination effects. Comput Math Methods Med 2022; 2022: 8693746.
- Yuan H, Kshirsagar M, Zamparo L, Lu Y, Leslie CS. BindSpace decodes transcription factor binding signals by large-scale sequence embedding. Nat Methods 2019; 16(9): 858-61. doi: 10.1038/s41592-019-0511-y PMID: 31406384
- Yang KK, Wu Z, Bedbrook CN, Arnold FH. Learned protein embeddings for machine learning. Bioinformatics 2018; 34(15): 2642-8. doi: 10.1093/bioinformatics/bty178 PMID: 29584811
- Zou Q, Xing P, Wei L, Liu B. Gene2vec: Gene subsequence embedding for prediction of mammalian N6 -methyladenosine sites from mRNA. RNA 2019; 25(2): 205-18. doi: 10.1261/rna.069112.118 PMID: 30425123
- Zeng W, Wu M, Jiang R. Prediction of enhancer-promoter interactions via natural language processing. BMC Genomics 2018; 19(S2): 84. doi: 10.1186/s12864-018-4459-6 PMID: 29764360
- Wang Y, You ZH, Yang S, Li X, Jiang TH, Zhou X. A high efficient biological language model for predicting proteinprotein interactions. Cells 2019; 8(2): 122. doi: 10.3390/cells8020122 PMID: 30717470
- Woloszynek S, Zhao Z, Chen J, Rosen GL. 16S rRNA sequence embeddings: Meaningful numeric feature representations of nucleotide sequences that are convenient for downstream analyses. PLOS Comput Biol 2019; 15(2): e1006721. doi: 10.1371/journal.pcbi.1006721 PMID: 30807567
- ÖZCAN ŞN, Özgür A, Gürgen F. Statistical representation models for mutation information within genomic data. BMC Bioinformatics 2019; 20(1): 1-13. PMID: 30606105
- Wu C, Gao R, Zhang Y, De Marinis Y. PTPD: Predicting therapeutic peptides by deep learning and word2vec. BMC Bioinformatics 2019; 20(1): 456. doi: 10.1186/s12859-019-3006-z PMID: 31492094
- Nguyen TTD, Le NQK, Ho QT, Phan DV, Ou YY. Using word embedding technique to efficiently represent protein sequences for identifying substrate specificities of transporters. Anal Biochem 2019; 577: 73-81. doi: 10.1016/j.ab.2019.04.011 PMID: 31022378
- Asgari E, McHardy AC, Mofrad MRK. Probabilistic variable-length segmentation of protein sequences for discriminative motif discovery (DiMotif) and sequence embedding (ProtVecX). Sci Rep 2019; 9(1): 3577. doi: 10.1038/s41598-019-38746-w PMID: 30837494
- Aoki G, Sakakibara Y. Convolutional neural networks for classification of alignments of non-coding RNA sequences. Bioinformatics 2018; 34(13): i237-44. doi: 10.1093/bioinformatics/bty228 PMID: 29949978
- Pan X, Zuallaert J, Wang X, et al. ToxDL: Deep learning using primary structure and domain embeddings for assessing protein toxicity. Bioinformatics 2021; 36(21): 5159-68. doi: 10.1093/bioinformatics/btaa656 PMID: 32692832
- Yang S, Liu X, Ng RT. ProbeRating: A recommender system to infer binding profiles for nucleic acid-binding proteins. Bioinformatics 2020; 36(18): 4797-804. doi: 10.1093/bioinformatics/btaa580 PMID: 32573679
- Xie W, Luo J, Pan C, Liu Y. SG-LSTM-FRAME: A computational frame using sequence and geometrical information via LSTM to predict miRNAgene associations. Brief Bioinform 2021; 22(2): 2032-42. doi: 10.1093/bib/bbaa022 PMID: 32181478
- Chen Z, He N, Huang Y, Qin WT, Liu X, Li L. Integration of a deep learning classifier with a random forest approach for predicting malonylation sites. Genom Proteom Bioinform 2018; 16(6): 451-9. doi: 10.1016/j.gpb.2018.08.004 PMID: 30639696
- Yang S, Wang Y, Lin Y, Shao D, He K, Huang L. LncMirNet: Predicting LncRNAmiRNA interaction based on deep learning of ribonucleic acid sequences. Molecules 2020; 25(19): 4372. doi: 10.3390/molecules25194372 PMID: 32977679
- Asgari E, Mofrad MRK. Continuous distributed representation of biological sequences for deep proteomics and genomics. PLoS One 2015; 10(11): e0141287. doi: 10.1371/journal.pone.0141287 PMID: 26555596
- Khanal J, Tayara H, Zou Q, Chong KT. Identifying DNA N4-methylcytosine sites in the rosaceae genome with a deep learning model relying on distributed feature representation. Comput Struct Biotechnol J 2021; 19: 1612-9. doi: 10.1016/j.csbj.2021.03.015 PMID: 33868598
- Xu B, Tan Z, Li K, Jiang T, Peng Y. Predicting the host of influenza viruses based on the word vector. PeerJ 2017; 5: e3579. doi: 10.7717/peerj.3579 PMID: 28729956
- Zeng M, Wu Y, Lu C, Zhang F, Wu FX, Li M. DeepLncLoc: A deep learning framework for long non-coding RNA subcellular localization prediction based on subsequence embedding. Brief Bioinform 2022; 23(1): bbab360. doi: 10.1093/bib/bbab360 PMID: 34498677
- Wang Z, Lei X. Prediction of RBP binding sites on circRNAs using an LSTM-based deep sequence learning architecture. Brief Bioinform 2021; 22(6): bbab342. doi: 10.1093/bib/bbab342 PMID: 34415289
- Ostrovsky-Berman M, Frankel B, Polak P, Yaari G. Immune2vec: Embedding B/T cell receptor sequences in N using natural language processing. Front Immunol 2021; 12: 680687. doi: 10.3389/fimmu.2021.680687 PMID: 34367141
- Heinzinger M, Elnaggar A, Wang Y, et al. Modeling aspects of the language of life through transfer-learning protein sequences. BMC Bioinformatics 2019; 20(1): 723. doi: 10.1186/s12859-019-3220-8 PMID: 31847804
- Liu XQ, Li BX, Zeng GR, Liu QY, Ai DM. Prediction of long non-coding RNAs based on deep learning. Genes 2019; 10(4): 273. doi: 10.3390/genes10040273 PMID: 30987229
- Chen Z-H, You Z-H, Zhang W-B, Wang Y-B, Cheng L, Alghazzawi D. Global vectors representation of protein sequences and its application for predicting self-interacting proteins with multi-grained cascade forest model. Genes 2019; 10(11): 924. doi: 10.3390/genes10110924 PMID: 31726752
- Vang YS, Xie X. HLA class I binding prediction via convolutional neural networks. Bioinformatics 2017; 33(17): 2658-65. doi: 10.1093/bioinformatics/btx264 PMID: 28444127
- Min X, Zeng W, Chen N, Chen T, Jiang R. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding. Bioinformatics 2017; 33(14): i92-i101. doi: 10.1093/bioinformatics/btx234 PMID: 28881969
- Hong J, Gao R, Yang Y. CrepHAN: Cross-species prediction of enhancers by using hierarchical attention networks. Bioinformatics 2021; 37(20): 3436-43. doi: 10.1093/bioinformatics/btab349 PMID: 33978703
- Jin Y, Lu J, Shi R, Yang Y. EmbedDTI: Enhancing the molecular representations via sequence embedding and graph convolutional network for the prediction of drug-target interaction. Biomolecules 2021; 11(12): 1783. doi: 10.3390/biom11121783 PMID: 34944427
- Hou WJ, Ceesay B. Extraction of drugdrug interaction using neural embedding. J Bioinform Comput Biol 2018; 16(6): 1840027. doi: 10.1142/S0219720018400279 PMID: 30567477
- Chen Q, Lee K, Yan S, Kim S, Wei CH, Lu Z. BioConceptVec: Creating and evaluating literature-based biomedical concept embeddings on a large scale. PLOS Comput Biol 2020; 16(4): e1007617. doi: 10.1371/journal.pcbi.1007617 PMID: 32324731
- You R, Huang X, Zhu S. DeepText2GO: Improving large-scale protein function prediction with deep semantic text representation. Methods 2018; 145: 82-90. doi: 10.1016/j.ymeth.2018.05.026 PMID: 29883746
- Patrick MT, Raja K, Miller K, et al. Drug repurposing prediction for immune-mediated cutaneous diseases using a word-embeddingbased machine learning approach. J Invest Dermatol 2019; 139(3): 683-91. doi: 10.1016/j.jid.2018.09.018 PMID: 30342048
- Du J, Jia P, Dai Y, Tao C, Zhao Z, Zhi D. Gene2vec: Distributed representation of genes based on co-expression. BMC Genomics 2019; 20(S1): 82. doi: 10.1186/s12864-018-5370-x PMID: 30712510
- Choi J, Oh I, Seo S, Ahn J. G2Vec: Distributed gene representations for identification of cancer prognostic genes. Sci Rep 2018; 8(1): 13729. doi: 10.1038/s41598-018-32180-0 PMID: 30213980
- Dai W, Chang Q, Peng W, Zhong J, Li Y. Network embedding the proteinprotein interaction network for human essential genes identification. Genes 2020; 11(2): 153. doi: 10.3390/genes11020153 PMID: 32023848
- Alachram H, Chereda H, Beißbarth T, Wingender E, Stegmaier P. Text mining-based word representations for biomedical data analysis and protein-protein interaction networks in machine learning tasks. PLoS One 2021; 16(10): e0258623. doi: 10.1371/journal.pone.0258623 PMID: 34653224
- Yang K, Wang R, Liu G, et al. HerGePred: heterogeneous network embedding representation for disease gene prediction. IEEE J Biomed Health Inform 2019; 23(4): 1805-15. doi: 10.1109/JBHI.2018.2870728 PMID: 31283472
- Chen L, Zhang YH, Huang G, Pan X, Huang T, Cai YD. Inferring novel genes related to oral cancer with a network embedding method and one-class learning algorithms. Gene Ther 2019; 26(12): 465-78. doi: 10.1038/s41434-019-0099-y PMID: 31455874
- Xiao Z, Deng Y. Graph embedding-based novel protein interaction prediction via higher-order graph convolutional network. PLoS One 2020; 15(9): e0238915. doi: 10.1371/journal.pone.0238915 PMID: 32970681
- Zhang X, Xiao W, Xiao W, Deep HE. DeepHE: Accurately predicting human essential genes based on deep learning. PLOS Comput Biol 2020; 16(9): e1008229. doi: 10.1371/journal.pcbi.1008229 PMID: 32936825
- Pan X, Lu L, Cai YD. Predicting protein subcellular location with network embedding and enrichment features. Biochim Biophys Acta Proteins Proteomics 2020; 1868(10): 140477. doi: 10.1016/j.bbapap.2020.140477 PMID: 32593761
- Deepika SS, Geetha TV. A meta-learning framework using representation learning to predict drug-drug interaction. J Biomed Inform 2018; 84: 136-47. doi: 10.1016/j.jbi.2018.06.015 PMID: 29959033
- Devkota K, Murphy JM, Cowen LJ. GLIDE: Combining local methods and diffusion state embeddings to predict missing interactions in biological networks. Bioinformatics 2020; 36(S1): i464-73. doi: 10.1093/bioinformatics/btaa459 PMID: 32657369
- Zhang J, Jiang Z, Hu X, Song B. A novel graph attention adversarial network for predicting disease-related associations. Methods 2020; 179: 81-8. doi: 10.1016/j.ymeth.2020.05.010 PMID: 32446956
- Li J, Liu Y, Zhang Z, Liu B, Wang Y. PmDNE: Prediction of miRNA-disease association based on network embedding and network similarity analysis. Biomed Res Int 2020; 2020: 6248686. doi: 10.1155/2020/6248686
- Zhang HY, Wang L, You ZH, et al. iGRLCDA: identifying circRNAdisease association based on graph representation learning. Brief Bioinform 2022; 23(3): bbac083. doi: 10.1093/bib/bbac083 PMID: 35323894
- Li L, Wang YT, Ji CM, Zheng CH, Ni JC, Su YS. GCAEMDA: Predicting miRNA-disease associations via graph convolutional autoencoder. PLOS Comput Biol 2021; 17(12): e1009655. doi: 10.1371/journal.pcbi.1009655 PMID: 34890410
- Kang C, Zhang H, Liu Z, Huang S, Yin Y. LR-GNN: A graph neural network based on link representation for predicting molecular associations. Brief Bioinform 2022; 23(1): bbab513. doi: 10.1093/bib/bbab513 PMID: 34889446
- Lan W, Dong Y, Chen Q, et al. KGANCDA: Predicting circRNA-disease associations based on knowledge graph attention network. Brief Bioinform 2022; 23(1): bbab494. doi: 10.1093/bib/bbab494 PMID: 34864877
- Xuan P, Zhan L, Cui H, Zhang T, Nakaguchi T, Zhang W. Graph triple-attention network for disease-related lncRNA prediction. IEEE J Biomed Health Inform 2022; 26(6): 2839-49. doi: 10.1109/JBHI.2021.3130110 PMID: 34813484
- Bamunu Mudiyanselage T, Lei X, Senanayake N, Zhang Y, Pan Y. Predicting CircRNA disease associations using novel node classification and link prediction models on Graph Convolutional Networks. Methods 2022; 198: 32-44. doi: 10.1016/j.ymeth.2021.10.008 PMID: 34748953
- Choi W, Lee H. Identifying disease-gene associations using a convolutional neural network-based model by embedding a biological knowledge graph with entity descriptions. PLoS One 2021; 16(10): e0258626. doi: 10.1371/journal.pone.0258626 PMID: 34653225
- Zhao X, Zhao X, Yin M. Heterogeneous graph attention network based on meta-paths for lncRNAdisease association prediction. Brief Bioinform 2022; 23(1): bbab407. doi: 10.1093/bib/bbab407 PMID: 34585231
- Fan Y, Chen M, Pan X. GCRFLDA: scoring lncRNA-disease associations using graph convolution matrix completion with conditional random field. Brief Bioinform 2022; 23(1): bbab361. doi: 10.1093/bib/bbab361 PMID: 34486019
- Ashoor H, Chen X, Rosikiewicz W, et al. Graph embedding and unsupervised learning predict genomic sub-compartments from HiC chromatin interaction data. Nat Commun 2020; 11(1): 1173. doi: 10.1038/s41467-020-14974-x PMID: 32127534
- Wang J, Zhang J, Cai Y, Deng L. Deepmir2go: Inferring functions of human micrornas using a deep multi-label classification model. Int J Mol Sci 2019; 20(23): 6046. doi: 10.3390/ijms20236046 PMID: 31801264
- Li Y, Keqi W, Wang G. Evaluating disease similarity based on gene network reconstruction and representation. Bioinformatics 2021; 37(20): 3579-87. doi: 10.1093/bioinformatics/btab252 PMID: 33978702
- Kim S, Lee H, Kim K, Kang J. Mut2Vec: Distributed representation of cancerous mutations. BMC Med Genomics 2018; 11(S2): 33. doi: 10.1186/s12920-018-0349-7 PMID: 29697361
- Villegas-Morcillo A, Makrodimitris S, van Ham RCHJ, Gomez AM, Sanchez V, Reinders MJT. Unsupervised protein embeddings outperform hand-crafted sequence and structure features at predicting molecular function. Bioinformatics 2021; 37(2): 162-70. doi: 10.1093/bioinformatics/btaa701 PMID: 32797179
- Lu C, Zeng M, Wu FX, Li M, Wang J. Improving circRNAdisease association prediction by sequence and ontology representations with convolutional and recurrent neural networks. Bioinformatics 2021; 36(24): 5656-64. doi: 10.1093/bioinformatics/btaa1077 PMID: 33367690
- Hao J, Ju CJ-T, Chen M, Sun Y, Zaniolo C, Wang W, Eds. Biojoie: Joint representation learning of biological knowledge bases. Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. doi: 10.1145/3388440.3412477
- Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, et al. Language models are few-shot learners. Adv Neural Inf Process Syst 2020; 33: 1877-901.
- PubMedGPT 2.7B 2022. 2022. Available from: https://crfm.stanford.edu/2022/12/15/pubmedgpt.html
Supplementary files
