Investigation of LncRNAs Expression as a Potential Biomarker in the Diagnosis and Treatment of Human Brucellosis


Cite item

Full Text

Abstract

Long non-coding RNAs (LncRNAs) are significant contributors to bacterial infections and host defense responses, presenting a novel class of gene regulators beyond conventional protein-coding genes. This narrative review aimed to explore the involvement of LncRNAs as a potential biomarker in the diagnosis and treatment of bacterial infections, with a specific focus on Brucella infections. A comprehensive literature review was conducted to identify relevant studies examining the roles of LncRNAs in immune responses during bacterial infections, with a specific emphasis on Brucella infections. Pub- Med, Scopus and other major scientific databases were searched using relevant keywords. LncRNAs crucially regulate immune responses to bacterial infections, influencing transcription factors, proinflammatory cytokines, and immune cell behavior, with both positive and negative effects. The NF-κB pathway is a key regulator for many LncRNAs in bacterial infections. During Brucella infections, essential LncRNAs activate the innate immune response, increasing proinflammatory cytokine production and immune cell differentiation. LncRNAs are associated with human brucellosis, holding promise for screening, diagnostics, or therapeutics. Further research is needed to fully understand LncRNAs' precise functions in Brucella infection and pathogenesis. Specific LncRNAs, like IFNG-AS1 and NLRP3, are upregulated during brucellosis, while others, such as Gm28309, are downregulated, influencing immunosuppression and bacterial survival. Investigating the prognostic and therapeutic potential of Brucellarelated LncRNAs warrants ongoing investigation, including their roles in other immune cells like macrophages, dendritic cells, and neutrophils responsible for bacterial clearance. Unraveling the intricate relationship between LncRNAs and brucellosis may reveal novel regulatory mechanisms and LncRNAs' roles in infection regulation, expediting diagnostics and enhancing therapeutic strategies against Brucella infections.

About the authors

Mansoor Khaledi

Department of Microbiology, Faculty of Medicine,, Shahed University

Email: info@benthamscience.net

Mohammad Haddadi

Clinical Microbiology Research Center,, Ilam University of Medical Sciences

Email: info@benthamscience.net

Shahrbanoo Aziziraftar

Department of Pathology,, University of California San Francisco

Email: info@benthamscience.net

Foroogh Neamati

Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Amirhossein Sahebkar

Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Mansoor Kodori

Non-communicable Diseases Research Center, Bam University of Medical Sciences

Email: info@benthamscience.net

Mohammad Abavisani

Student Research Committee, Mashhad School of Medical Sciences

Email: info@benthamscience.net

Hadis Fathizadeh

Student Research Committee, Department of Laboratory Sciences, Sirjan School of Medical Sciences

Email: info@benthamscience.net

References

  1. Jiao H, Zhou Z, Li B, et al. The mechanism of facultative intracellular parasitism of Brucella. Int J Mol Sci 2021; 22(7): 3673. doi: 10.3390/ijms22073673 PMID: 33916050
  2. Budak F, Bal SH, Tezcan G, et al. MicroRNA expression patterns of CD8+ T cells in acute and chronic brucellosis. PLoS One 2016; 11(11): e0165138. doi: 10.1371/journal.pone.0165138 PMID: 27824867
  3. Huy TXN, Nguyen TT, Kim H, Reyes AWB, Kim S. Brucella phagocytosis mediated by pathogen-host interactions and their intracellular survival. Microorganisms 2022; 10(10): 2003. doi: 10.3390/microorganisms10102003 PMID: 36296279
  4. Gumaa MM, Cao X, Li Z, et al. Establishment of a recombinase polymerase amplification (RPA) assay for the detection of Brucella spp. Infection. Mol Cell Probes 2019; 47: 101434. doi: 10.1016/j.mcp.2019.101434 PMID: 31401295
  5. Khan M, Harms JS, Liu Y, et al. Brucella suppress STING expression via miR-24 to enhance infection. PLoS Pathog 2020; 16(10): e1009020. doi: 10.1371/journal.ppat.1009020 PMID: 33108406
  6. Budak F, Bal SH, Tezcan G, et al. The microRNA expression signature of CD4+ T cells in the transition of brucellosis into chronicity. PLoS One 2018; 13(6): e0198659. doi: 10.1371/journal.pone.0198659 PMID: 29897958
  7. de Figueiredo P, Ficht TA, Rice-Ficht A, Rossetti CA, Adams LG. Pathogenesis and immunobiology of brucellosis: Review of Brucella-host interactions. Am J Pathol 2015; 185(6): 1505-17. doi: 10.1016/j.ajpath.2015.03.003 PMID: 25892682
  8. Oliveira SC, de Oliveira FS, Macedo GC, de Almeida LA, Carvalho NB. The role of innate immune receptors in the control of Brucella abortus infection: Toll-like receptors and beyond. Microbes Infect 2008; 10(9): 1005-9. doi: 10.1016/j.micinf.2008.07.005 PMID: 18664388
  9. Bosilkovski M, Keramat F, Arapović J. The current therapeutical strategies in human brucellosis. Infection 2021; 49(5): 823-32. doi: 10.1007/s15010-021-01586-w PMID: 33650077
  10. Di Bonaventura G, Angeletti S, Ianni A, Petitti T, Gherardi G. Microbiological laboratory diagnosis of human brucellosis: An overview. Pathogens 2021; 10(12): 1623. doi: 10.3390/pathogens10121623 PMID: 34959578
  11. Tang Y, Ma C, Sun H, et al. Serum levels of seven general cytokines in acute brucellosis before and after treatment. Infect Drug Resist 2021; 14: 5501-10. doi: 10.2147/IDR.S341331 PMID: 34955644
  12. Hassan H, Salami A, Ghssein G, El-Hage J, Nehme N, Awada R. Seroprevalence of Brucella abortus in cattle in Southern Lebanon using different diagnostic tests. Vet World 2020; 13(10): 2234-42. doi: 10.14202/vetworld.2020.2234-2242 PMID: 33281362
  13. Al Dahouk S, Nöckler K. Implications of laboratory diagnosis on brucellosis therapy. Expert Rev Anti Infect Ther 2011; 9(7): 833-45. doi: 10.1586/eri.11.55 PMID: 21810055
  14. Li G, Rong Z, Wang S, et al. Rapid detection of brucellosis using a quantum dot-based immunochromatographic test strip. PLoS Negl Trop Dis 2020; 14(9): e0008557. doi: 10.1371/journal.pntd.0008557 PMID: 32976512
  15. Wang Y, Ke Y, Xu J, et al. Identification of a novel small non-coding RNA modulating the intracellular survival of Brucella melitensis. Front Microbiol 2015; 6: 164. doi: 10.3389/fmicb.2015.00164 PMID: 25852653
  16. González Plaza JJ. Small RNAs in cell-to-cell communications during bacterial infection. FEMS Microbiol Lett 2018; 365(7): fny024. doi: 10.1093/femsle/fny024 PMID: 29390095
  17. Deng X, Guo J, Sun Z, et al. Brucella-induced downregulation of lncRNA Gm28309 triggers macrophages inflammatory response through the miR-3068-5p/NF-κB pathway. Front Immunol 2020; 11: 581517. doi: 10.3389/fimmu.2020.581517
  18. Xu D, Song J, Li G, et al. A novel small RNA Bmsr1 enhances virulence in Brucella melitensis M28. Vet Microbiol 2018; 223: 1-8. doi: 10.1016/j.vetmic.2018.07.007 PMID: 30173733
  19. Dal T, Kara SS, Cikman A, et al. Comparison of multiplex real-time polymerase chain reaction with serological tests and culture for diagnosing human brucellosis. J Infect Public Health 2019; 12(3): 337-42. doi: 10.1016/j.jiph.2018.11.008 PMID: 30553722
  20. Yagupsky P, Morata P, Colmenero JD. Laboratory diagnosis of human brucellosis. Clin Microbiol Rev 2019; 33(1): e00073-19. doi: 10.1128/CMR.00073-19 PMID: 31722888
  21. Moeini-Zanjani A, Pournajaf A, Ferdosi-Shahandashti E, et al. Comparison of loop-mediated isothermal amplification and conventional PCR tests for diagnosis of common Brucella species. BMC Res Notes 2020; 13(1): 533. doi: 10.1186/s13104-020-05377-8 PMID: 33187548
  22. Sabour S, Arzanlou M, Jeddi F, et al. Evaluating the efficiency of TaqMan real-time PCR and serological methods in the detection of Brucella spp. in clinical specimens collected from suspected patients in Ardabil, Iran. J Microbiol Methods 2020; 175: 105982. doi: 10.1016/j.mimet.2020.105982 PMID: 32544484
  23. Guzmán-Bracho C, Salgado-Jiménez B, Beltrán-Parra LG, et al. Evaluation of serological diagnostic tests of human brucellosis for prevention and control in Mexico. Eur J Clin Microbiol Infect Dis 2020; 39(3): 575-81. doi: 10.1007/s10096-019-03760-3 PMID: 31960174
  24. Hassan H, Salami A, Nehme N, Hakeem RA, El Hage J, Awada R. Prevalence and prevention of brucellosis in cattle in Lebanon. Vet World 2020; 13(2): 364-71. doi: 10.14202/vetworld.2020.364-371 PMID: 32255981
  25. Dadar M, Shahali Y, Whatmore AM. Human brucellosis caused by raw dairy products: A review on the occurrence, major risk factors and prevention. Int J Food Microbiol 2019; 292: 39-47. doi: 10.1016/j.ijfoodmicro.2018.12.009 PMID: 30572264
  26. Lu J, Wu Z, Liu B, et al. A time-resolved fluorescence lateral flow immunoassay for rapid and quantitative serodiagnosis of Brucella infection in humans. J Pharm Biomed Anal 2021; 200: 114071. doi: 10.1016/j.jpba.2021.114071 PMID: 33866295
  27. Becker GN, Tuon FF. Comparative study of IS711 and bcsp31-based polymerase chain reaction (PCR) for the diagnosis of human brucellosis in whole blood and serum samples. J Microbiol Methods 2021; 183: 106182. doi: 10.1016/j.mimet.2021.106182 PMID: 33647359
  28. Sagi M, Nesher L, Yagupsky P. The Bactec FX blood culture system detects Brucella melitensis bacteremia in adult patients within the routine 1-week incubation period. J Clin Microbiol 2017; 55(3): 942-6. doi: 10.1128/JCM.02320-16 PMID: 28053214
  29. Araj GF. Update on laboratory diagnosis of human brucellosis. Int J Antimicrob Agents 2010; 36 (Suppl. 1): S12-7. doi: 10.1016/j.ijantimicag.2010.06.014 PMID: 20692128
  30. Głowacka P, Żakowska D, Naylor K, Niemcewicz M, Bielawska-Drózd A. Brucella-virulence factors, pathogenesis and treatment. Pol J Microbiol 2018; 67(2): 151-61. doi: 10.21307/pjm-2018-029 PMID: 30015453
  31. Yang XM, Jia YL, Zhang Y, et al. Clinical effect of doxycycline combined with compound sulfamethoxazole and rifampicin in the treatment of brucellosis spondylitis. Drug Des Devel Ther 2021; 15: 4733-40. doi: 10.2147/DDDT.S341242 PMID: 34848945
  32. Mirzaei R, Sholeh M, Jalalifar S, et al. Immunometabolism in human brucellosis: An emerging field of investigation. Microb Pathog 2021; 158: 105115. doi: 10.1016/j.micpath.2021.105115 PMID: 34332069
  33. López-Santiago R, Sánchez-Argáez AB, De Alba-Núñez LG, Baltierra-Uribe SL, Moreno-Lafont MC. Immune response to mucosal brucella infection. Front Immunol 2019; 10: 1759. doi: 10.3389/fimmu.2019.01759 PMID: 31481953
  34. Ahmed W, Zheng K, Liu ZF. Establishment of chronic infection: Brucella’s stealth strategy. Front Cell Infect Microbiol 2016; 6: 30. doi: 10.3389/fcimb.2016.00030 PMID: 27014640
  35. Casabuono AC, Czibener C, Del Giudice MG, Valguarnera E, Ugalde JE, Couto AS. New features in the lipid A structure of Brucella suis and Brucella abortus lipopolysaccharide. J Am Soc Mass Spectrom 2017; 28(12): 2716-23. doi: 10.1007/s13361-017-1805-x PMID: 28924631
  36. Conde-Álvarez R, Arce-Gorvel V, Iriarte M, et al. The lipopolysaccharide core of Brucella abortus acts as a shield against innate immunity recognition. PLoS Pathog 2012; 8(5): e1002675. doi: 10.1371/journal.ppat.1002675 PMID: 22589715
  37. Martirosyan A, Gorvel JP. Brucella evasion of adaptive immunity. Future Microbiol 2013; 8(2): 147-54. doi: 10.2217/fmb.12.140 PMID: 23374122
  38. Gheitasi R, Keramat F, Khosravi S, Hajilooi M, Pletz MW, Makarewicz O. Evaluation of th2 and th17 immunity-related factors as indicators of brucellosis. Front Cell Infect Microbiol 2022; 11: 786994. doi: 10.3389/fcimb.2021.786994 PMID: 35071039
  39. Roop RM II, Caswell CC. Bacterial persistence: Finding the "sweet spot". Cell Host Microbe 2013; 14(2): 119-20. doi: 10.1016/j.chom.2013.07.016 PMID: 23954150
  40. Zhang K, Wang H, Guo F, et al. OMP31 of Brucella melitensis 16M impairs the apoptosis of macrophages triggered by TNF-α. Exp Ther Med 2016; 12(4): 2783-9. doi: 10.3892/etm.2016.3655 PMID: 27698784
  41. Wei P, Cui G, Lu Q, et al. A20 promotes Brucella intracellular growth via inhibition of macrophage cell death and activation. Vet Microbiol 2015; 175(1): 50-7. doi: 10.1016/j.vetmic.2014.11.006 PMID: 25433453
  42. Gao G, Xu J. Important biology events and pathways in Brucella infection and implications for novel antibiotic drug targets. Crit Rev Eukaryot Gene Expr 2013; 23(1): 65-76. doi: 10.1615/CritRevEukarGeneExpr.2013006580 PMID: 23557338
  43. Rolán HG, Tsolis RM. Inactivation of the type IV secretion system reduces the Th1 polarization of the immune response to Brucella abortus infection. Infect Immun 2008; 76(7): 3207-13. doi: 10.1128/IAI.00203-08 PMID: 18458071
  44. Ning Gao, Jennings P, Yuhong Guo, Yuan D. Regulatory role of natural killer (NK) cells on antibody responses to Brucella abortus. Innate Immun 2011; 17(2): 152-63. doi: 10.1177/1753425910367526 PMID: 20418255
  45. Skendros P, Pappas G, Boura P. Cell-mediated immunity in human brucellosis. Microbes Infect 2011; 13(2): 134-42. doi: 10.1016/j.micinf.2010.10.015 PMID: 21034846
  46. Zhu J. T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production. Cytokine 2015; 75(1): 14-24. doi: 10.1016/j.cyto.2015.05.010 PMID: 26044597
  47. Rahmanpour M, Keramat F, Jourghasemi S, et al. Direct correlation between Th1 and Th17 responses in immunity to Brucella infection. Microbes Infect 2019; 21(10): 441-8. doi: 10.1016/j.micinf.2019.05.002 PMID: 31185302
  48. Luckheeram RV, Zhou R, Verma AD, Xia B. CD4⁺T cells: Differentiation and functions. Clin Dev Immunol 2012; 2012: 1-12. doi: 10.1155/2012/925135 PMID: 22474485
  49. Mirzaei R, Bouzari B, Hosseini-Fard SR, et al. Role of microbiota-derived short-chain fatty acids in nervous system disorders. Biomed Pharmacother 2021; 139: 111661. doi: 10.1016/j.biopha.2021.111661 PMID: 34243604
  50. Gaffen SL. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 2009; 9(8): 556-67. doi: 10.1038/nri2586 PMID: 19575028
  51. Besnard AG, Sabat R, Dumoutier L, et al. Dual Role of IL-22 in allergic airway inflammation and its cross-talk with IL-17A. Am J Respir Crit Care Med 2011; 183(9): 1153-63. doi: 10.1164/rccm.201008-1383OC PMID: 21297073
  52. Spurlock CF III, Tossberg JT, Guo Y, Collier SP, Crooke PS III, Aune TM. Expression and functions of long noncoding RNAs during human T helper cell differentiation. Nat Commun 2015; 6(1): 6932. doi: 10.1038/ncomms7932 PMID: 25903499
  53. Wen Y, Chen H, Luo F, Zhou H, Li Z. Roles of long noncoding RNAs in bacterial infection. Life Sci 2020; 263: 118579. doi: 10.1016/j.lfs.2020.118579 PMID: 33058913
  54. Chi Y, Wang D, Wang J, Yu W, Yang J. Long non-coding RNA in the pathogenesis of cancers. Cells 2019; 8(9): 1015. doi: 10.3390/cells8091015 PMID: 31480503
  55. Latgé G, Poulet C, Bours V, Josse C, Jerusalem G. Natural antisense transcripts: Molecular mechanisms and implications in breast cancers. Int J Mol Sci 2018; 19(1): 123. doi: 10.3390/ijms19010123 PMID: 29301303
  56. Kumar L. Shamsuzzama, Haque R, Baghel T, Nazir A. Circular RNAs: The emerging class of non-coding RNAs and their potential role in human neurodegenerative diseases. Mol Neurobiol 2017; 54(9): 7224-34. doi: 10.1007/s12035-016-0213-8 PMID: 27796758
  57. Liang H, Liu J, Su S, Zhao Q. Mitochondrial noncoding RNAs: New wine in an old bottle. RNA Biol 2021; 18(12): 2168-82. doi: 10.1080/15476286.2021.1935572 PMID: 34110970
  58. Gao N, Li Y, Li J, et al. Long non-coding RNAs: The regulatory mechanisms, research strategies, and future directions in cancers. Front Oncol 2020; 10: 598817. doi: 10.3389/fonc.2020.598817 PMID: 33392092
  59. Naganuma T, Hirose T. Paraspeckle formation during the biogenesis of long non-coding RNAs. RNA Biol 2013; 10(3): 456-61. doi: 10.4161/rna.23547 PMID: 23324609
  60. Fathizadeh H, Hayat SMG, Dao S, et al. Long non-coding RNA molecules in tuberculosis. Int J Biol Macromol 2020; 156: 340-6. doi: 10.1016/j.ijbiomac.2020.04.030 PMID: 32283111
  61. Kashi K, Henderson L, Bonetti A, Carninci P. Discovery and functional analysis of lncRNAs: Methodologies to investigate an uncharacterized transcriptome. Biochim Biophys Acta Gene Regul Mech 2016; 1859(1): 3-15. doi: 10.1016/j.bbagrm.2015.10.010 PMID: 26477492
  62. De Santa F, Barozzi I, Mietton F, et al. A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol 2010; 8(5): e1000384. doi: 10.1371/journal.pbio.1000384 PMID: 20485488
  63. Dhanoa JK, Sethi RS, Verma R, Arora JS, Mukhopadhyay CS. Long non-coding RNA: Its evolutionary relics and biological implications in mammals: A review. J Anim Sci Technol 2018; 60(1): 25. doi: 10.1186/s40781-018-0183-7 PMID: 30386629
  64. Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495(7441): 333-8. doi: 10.1038/nature11928 PMID: 23446348
  65. Dragomir M, Calin GA. Circular RNAs in cancer - Lessons learned From microRNAs. Front Oncol 2018; 8: 179. doi: 10.3389/fonc.2018.00179 PMID: 29911069
  66. Hassan Z. Functions and implications of circular RNAs in antiviral immunity. Adv Microbiol 2019; 9(7): 602-15. doi: 10.4236/aim.2019.97037
  67. Yoon JH, Gorospe M. Cross-linking immunoprecipitation and qPCR (CLIP-qPCR) analysis to map interactions between long noncoding RNAs and RNA-binding proteins. Methods Mol Biol 2016; 1402: 11-7. doi: 10.1007/978-1-4939-3378-5_2 PMID: 26721479
  68. Salehi S, Taheri MN, Azarpira N, Zare A, Behzad-Behbahani A. State of the art technologies to explore long non-coding RNAs in cancer. J Cell Mol Med 2017; 21(12): 3120-40. doi: 10.1111/jcmm.13238 PMID: 28631377
  69. Gong Y, Zhu W, Sun M, Shi L. Bioinformatics analysis of long non-coding RNA and related diseases: An overview. Front Genet 2021; 12: 813873. doi: 10.3389/fgene.2021.813873 PMID: 34956340
  70. Zhou C, Huang Y, Tian Y, Zhang B, Yang X. LncRNA Linc00173 may be a potential prognostic biomarker in human solid tumors: A meta-analysis and bioinformatics analysis. Mol Cell Biochem 2023. doi: 10.1007/s11010-023-04684-5 PMID: 36894691
  71. Zhang H, Zhang G, Zhang F, et al. LINC00958 may be a new prognostic biomarker in various cancers: A meta-analysis and bioinformatics analysis. Front Genet 2022; 13: 998442. doi: 10.3389/fgene.2022.998442 PMID: 36437914
  72. Du S, Guo Y, Huang J, Xu J, Chen G. The expressions and functions of lncRNA related to m6a in hepatocellular carcinoma from a bioinformatics analysis. Comput Math Methods Med 2022; 2022: 1-11. doi: 10.1155/2022/1395557 PMID: 36276996
  73. Zhou YK, Shen ZA, Yu H, Luo T, Gao Y, Du PF. Predicting lncRNA–protein interactions with miRNAs as mediators in a heterogeneous network model. Front Genet 2020; 10: 1341. doi: 10.3389/fgene.2019.01341 PMID: 32038709
  74. Peng L, Liu F, Yang J, et al. Probing lncRNA-protein interactions: Data repositories, models, and algorithms. Front Genet 2020; 10: 1346. doi: 10.3389/fgene.2019.01346 PMID: 32082358
  75. Gudenas BL, Wang J, Kuang S, Wei A, Cogill SB, Wang L. Genomic data mining for functional annotation of human long noncoding RNAs. J Zhejiang Univ Sci B 2019; 20(6): 476-87. doi: 10.1631/jzus.B1900162 PMID: 31090273
  76. Cabili MN, Dunagin MC, McClanahan PD, et al. Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol 2015; 16(1): 20. doi: 10.1186/s13059-015-0586-4 PMID: 25630241
  77. Tamtaji OR, Derakhshan M, Rashidi Noshabad FZ, et al. Non-coding RNAs and brain tumors: Insights into their roles in apoptosis. Front Cell Dev Biol 2022; 9: 792185. doi: 10.3389/fcell.2021.792185 PMID: 35111757
  78. Arab K, Park YJ, Lindroth AM, et al. Long noncoding RNA TARID directs demethylation and activation of the tumor suppressor TCF21 via GADD45A. Mol Cell 2014; 55(4): 604-14. doi: 10.1016/j.molcel.2014.06.031 PMID: 25087872
  79. Jain AK, Xi Y, McCarthy R, et al. LncPRESS1 is a p53-regulated lncrna that safeguards pluripotency by disrupting sirt6-mediated de-acetylation of histone H3K56. Mol Cell 2016; 64(5): 967-81. doi: 10.1016/j.molcel.2016.10.039 PMID: 27912097
  80. Terashima M, Tange S, Ishimura A, Suzuki T. MEG3 long noncoding rna contributes to the epigenetic regulation of epithelial-mesenchymal transition in lung cancer cell lines. J Biol Chem 2017; 292(1): 82-99. doi: 10.1074/jbc.M116.750950 PMID: 27852821
  81. Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 2021; 22(2): 96-118. doi: 10.1038/s41580-020-00315-9 PMID: 33353982
  82. Li W, Notani D, Rosenfeld MG. Enhancers as non-coding RNA transcription units: Recent insights and future perspectives. Nat Rev Genet 2016; 17(4): 207-23. doi: 10.1038/nrg.2016.4 PMID: 26948815
  83. Zhang CL, Zhu KP, Ma XL. Antisense lncRNA FOXC2-AS1 promotes doxorubicin resistance in osteosarcoma by increasing the expression of FOXC2. Cancer Lett 2017; 396: 66-75. doi: 10.1016/j.canlet.2017.03.018 PMID: 28323030
  84. Li Y, Egranov SD, Yang L, Lin C. Molecular mechanisms of long noncoding RNAs‐mediated cancer metastasis. Genes Chromosomes Cancer 2019; 58(4): 200-7. doi: 10.1002/gcc.22691 PMID: 30350428
  85. Hu G, Niu F, Humburg BA, et al. Molecular mechanisms of long noncoding RNAs and their role in disease pathogenesis. Oncotarget 2018; 9(26): 18648-63. doi: 10.18632/oncotarget.24307 PMID: 29719633
  86. Raziq K, Cai M, Dong K, Wang P, Afrifa J, Fu S. Competitive endogenous network of lncRNA, miRNA, and mRNA in the chemoresistance of gastrointestinal tract adenocarcinomas. Biomed Pharmacother 2020; 130: 110570. doi: 10.1016/j.biopha.2020.110570 PMID: 32763816
  87. Xiao H, Tang K, Liu P, et al. LncRNA MALAT1 functions as a competing endogenous RNA to regulate ZEB2 expression by sponging miR-200s in clear cell kidney carcinoma. Oncotarget 2015; 6(35): 38005-15. doi: 10.18632/oncotarget.5357 PMID: 26461224
  88. Kotake Y, Goto T, Naemura M, Inoue Y, Okamoto H, Tahara K. Long noncoding RNA PANDA positively regulates proliferation of osteosarcoma cells. Anticancer Res 2017; 37(1): 81-6. doi: 10.21873/anticanres.11292 PMID: 28011477
  89. Chen H, Du G, Song X, Li L. Non-coding transcripts from enhancers: New insights into enhancer activity and gene expression regulation. Geno Proteo Bioinform 2017; 15(3): 201-7. doi: 10.1016/j.gpb.2017.02.003 PMID: 28599852
  90. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell 2009; 136(4): 629-41. doi: 10.1016/j.cell.2009.02.006 PMID: 19239885
  91. Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: A new paradigm. Cancer Res 2017; 77(15): 3965-81. doi: 10.1158/0008-5472.CAN-16-2634 PMID: 28701486
  92. Lu T, Wang Y, Chen D, Liu J, Jiao W. Potential clinical application of lncRNAs in non-small cell lung cancer. OncoTargets Ther 2018; 11: 8045-52. doi: 10.2147/OTT.S178431 PMID: 30519046
  93. Huang JL, Liu W, Tian LH, et al. Upregulation of long non-coding RNA MALAT-1 confers poor prognosis and influences cell proliferation and apoptosis in acute monocytic leukemia. Oncol Rep 2017; 38(3): 1353-62. doi: 10.3892/or.2017.5802 PMID: 28713913
  94. Sokhn ES, Salami A, El Roz A, Salloum L, Bahmad HF, Ghssein G. Antimicrobial susceptibilities and laboratory profiles of Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates as agents of urinary tract infection in Lebanon: Paving the way for better diagnostics. Med Sci 2020; 8(3): 32. doi: 10.3390/medsci8030032 PMID: 32823619
  95. Ilott NE, Heward JA, Roux B, et al. Long non-coding RNAs and enhancer RNAs regulate the lipopolysaccharide-induced inflammatory response in human monocytes. Nat Commun 2014; 5(1): 3979. doi: 10.1038/ncomms4979 PMID: 24909122
  96. Castellanos-Rubio A, Kratchmarov R, Sebastian M, et al. Cytoplasmic form of carlr lncRNA facilitates inflammatory gene expression upon NF-κB activation. J Immunol 2017; 199(2): 581-8. doi: 10.4049/jimmunol.1700023 PMID: 28626066
  97. Yang R, Huang F, Fu J, et al. Differential transcription profiles of long non-coding RNAs in primary human brain microvascular endothelial cells in response to meningitic Escherichia coli. Sci Rep 2016; 6(1): 38903. doi: 10.1038/srep38903 PMID: 27958323
  98. Rossi E, La Rosa R, Bartell JA, et al. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat Rev Microbiol 2021; 19(5): 331-42. doi: 10.1038/s41579-020-00477-5 PMID: 33214718
  99. Ghssein G, Ezzeddine Z. A review of Pseudomonas aeruginosa metallophores: Pyoverdine, pyochelin and pseudopaline. Biology 2022; 11(12): 1711. doi: 10.3390/biology11121711 PMID: 36552220
  100. Balloy V, Koshy R, Perra L, et al. Bronchial epithelial cells from cystic fibrosis patients express a specific long non-coding RNA signature upon pseudomonas aeruginosa infection. Front Cell Infect Microbiol 2017; 7: 218. doi: 10.3389/fcimb.2017.00218 PMID: 28611953
  101. Li R, Fang L, Pu Q, et al. MEG3-4 is a miRNA decoy that regulates IL-1β abundance to initiate and then limit inflammation to prevent sepsis during lung infection. Sci Signal 2018; 11(536): eaao2387. doi: 10.1126/scisignal.aao2387 PMID: 29945883
  102. Khalife H, Khalife H, Khodor H, Ghssein G, El Rashed Z, Abdel-Sater F. Epidemiology of Helicobacter pylori infection among the healthy population in Lebanon. World J Pharm Pharm Sci 2017; 6: 363-72.
  103. Kibria KMK, Hossain ME, Sultana J, et al. The prevalence of mixed helicobacter pylori infections in symptomatic and asymptomatic subjects in dhaka, bangladesh. Helicobacter 2015; 20(5): 397-404. doi: 10.1111/hel.12213 PMID: 25827337
  104. Liu L, Shuai T, Li B, Zhu L, Li X. Long non coding RNA lnc GNAT1 1 inhibits gastric cancer cell proliferation and invasion through the Wnt/β catenin pathway in Helicobacter pylori infection. Mol Med Rep 2018; 18(4): 4009-15. doi: 10.3892/mmr.2018.9405 PMID: 30132541
  105. Mao J, Fan S, Ma W, et al. Roles of Wnt/β-catenin signaling in the gastric cancer stem cells proliferation and salinomycin treatment. Cell Death Dis 2014; 5(1): e1039. doi: 10.1038/cddis.2013.515 PMID: 24481453
  106. Han T, Jing X, Bao J, et al. H. pylori infection alters repair of DNA double-strand breaks via SNHG17. J Clin Invest 2020; 130(7): 3901-18. doi: 10.1172/JCI125581 PMID: 32538894
  107. Zhou X, Chen H, Zhu L, et al. Helicobacter pylori infection related long noncoding RNA (lncRNA) AF147447 inhibits gastric cancer proliferation and invasion by targeting MUC2 and up-regulating miR-34c. Oncotarget 2016; 7(50): 82770-82. doi: 10.18632/oncotarget.13165 PMID: 27835575
  108. Zhu H, Wang Q, Yao Y, et al. Microarray analysis of Long non-coding RNA expression profiles in human gastric cells and tissues with Helicobacter pylori Infection. BMC Med Genomics 2015; 8(1): 84. doi: 10.1186/s12920-015-0159-0 PMID: 26690385
  109. Jia W, Zhang J, Ma F, et al. Long noncoding RNA THAP9-AS1 is induced by Helicobacter pylori and promotes cell growth and migration of gastric cancer. OncoTargets Ther 2019; 12: 6653-63. doi: 10.2147/OTT.S201832 PMID: 32021238
  110. Rajabi A, Riahi A, Shirabadi-Arani H, Moaddab Y, Haghi M, Safaralizadeh R. Overexpression of HOXA-AS2 LncRNA in patients with gastric cancer and its association with helicobacter pylori infection. J Gastrointest Cancer 2022; 53(1): 72-7. doi: 10.1007/s12029-020-00549-y PMID: 33174119
  111. Wang H, Wang X, Li X, et al. A novel long non‐coding RNA regulates the immune response in MAC ‐T cells and contributes to bovine mastitis. FEBS J 2019; 286(9): 1780-95. doi: 10.1111/febs.14783 PMID: 30771271
  112. Ding R, Wei S, Huang M. Long non-coding RNA KCNQ1OT1 overexpression promotes osteogenic differentiation of staphylococcus aureus-infected human bone mesenchymal stem cells by sponging microRNA miR-29b-3p. Bioengineered 2022; 13(3): 5855-67. doi: 10.1080/21655979.2022.2037898 PMID: 35226820
  113. Cui Y, Lu S, Tan H, Li J, Zhu M, Xu Y. Silencing of long non-coding RNA NONHSAT009968 ameliorates the staphylococcal protein a-inhibited osteogenic differentiation in human bone mesenchymal stem cells. Cell Physiol Biochem 2016; 39(4): 1347-59. doi: 10.1159/000447839 PMID: 27607236
  114. Wu H, Cao F, Zhou W, et al. Long noncoding RNA FAM83H-AS1 modulates spa-inhibited osteogenic differentiation in human bone mesenchymal stem cells. Mol Cell Biol 2020; 40(5): e00362-19. doi: 10.1128/MCB.00362-19 PMID: 31871129
  115. Yang L, Zhang X, Liu X. Long non coding RNA GAS5 protects against Mycoplasma pneumoniae pneumonia by regulating the microRNA 222 3p/TIMP3 axis. Mol Med Rep 2021; 23(5): 380. doi: 10.3892/mmr.2021.12019 PMID: 33760178
  116. Xu C, Deng H, Liu F, Zhao D, Tang H, Gu H. Long non-coding RNA PACER regulates mycoplasma pneumoniae-induced inflammatory response through interaction with NF-κB. Ann Clin Lab Sci 2022; 52(1): 21-6. PMID: 35181614
  117. Zhang F, Zhang J, Liu F, et al. Attenuated lncRNA NKILA enhances the secretory function of airway epithelial cells stimulated by mycoplasma pneumoniae via NF-κB. BioMed Res Int 2021; 2021: 1-9. doi: 10.1155/2021/6656298 PMID: 33855076
  118. Rajabi A, Bastani S, Maydanchi M, Tayefeh-Gholami S, Abdolahi S, Saber A, et al. Moderate prognostic value of lncRNA FOXD2-AS1 in gastric cancer with helicobacter pylori infection. J Gastrointest Cancer 2021; 53(3): 687-91. PMID: 34478035
  119. Jin C, Shi W, Wang F, et al. Long non-coding RNA HULC as a novel serum biomarker for diagnosis and prognosis prediction of gastric cancer. Oncotarget 2016; 7(32): 51763-72. doi: 10.18632/oncotarget.10107 PMID: 27322075
  120. Yang T, Zeng H, Chen W, et al. Helicobacter pylori infection, H19 and LINC00152 expression in serum and risk of gastric cancer in a Chinese population. Cancer Epidemiol 2016; 44: 147-53. doi: 10.1016/j.canep.2016.08.015 PMID: 27592063
  121. Luo F, Wen Y, Zhao L, et al. Chlamydia trachomatis induces lncRNA MIAT upregulation to regulate mitochondria‐mediated host cell apoptosis and chlamydial development. J Cell Mol Med 2022; 26(1): 163-77. doi: 10.1111/jcmm.17069 PMID: 34859581
  122. Yang X, Yang J, Wang J, et al. Microarray analysis of long noncoding RNA and mRNA expression profiles in human macrophages infected with Mycobacterium tuberculosis. Sci Rep 2016; 6(1): 38963. doi: 10.1038/srep38963 PMID: 27966580
  123. Huang S, Huang Z, Luo Q, Qing C. The expression of lncRNA NEAT1 in human tuberculosis and its antituberculosis effect. BioMed Res Int 2018; 2018: 1-8. doi: 10.1155/2018/9529072 PMID: 30534569
  124. Chen P, Huang Z, Chen L, et al. The relationships between LncRNA NNT-AS1, CRP, PCT and their interactions and the refractory mycoplasma pneumoniae pneumonia in children. Sci Rep 2021; 11(1): 2059. doi: 10.1038/s41598-021-81853-w PMID: 33479472
  125. Shirahama S, Miki A, Kaburaki T, Akimitsu N. Long non-coding RNAs involved in pathogenic infection. Front Genet 2020; 11: 454. doi: 10.3389/fgene.2020.00454 PMID: 32528521
  126. Carpenter S, Aiello D, Atianand MK, et al. A long noncoding RNA mediates both activation and repression of immune response genes. Science 2013; 341(6147): 789-92. doi: 10.1126/science.1240925 PMID: 23907535
  127. Zhu Y, Lu Y, Yuan L, et al. LincRNA-Cox2 regulates IL6/JAK3/STAT3 and NF-κB P65 pathway activation in Listeria monocytogenes-infected RAW264.7 cells. Int J Med Microbiol 2021; 311(5): 151515. doi: 10.1016/j.ijmm.2021.151515 PMID: 34146956
  128. Hu G, Gong AY, Wang Y, et al. LincRNA-Cox2 promotes late inflammatory gene transcription in macrophages through modulating SWI/SNF-mediated chromatin remodeling. J Immunol 2016; 196(6): 2799-808. doi: 10.4049/jimmunol.1502146 PMID: 26880762
  129. Elling R, Robinson EK, Shapleigh B, et al. Genetic models reveal cis and trans immune-regulatory activities for lincRNA-Cox2. Cell Rep 2018; 25(6): 1511-1524.e6. doi: 10.1016/j.celrep.2018.10.027 PMID: 30404006
  130. Agliano F, Fitzgerald KA, Vella AT, Rathinam VA, Medvedev AE. Long non-coding RNA LincRNA-EPS inhibits host defense against listeria monocytogenes infection. Front Cell Infect Microbiol 2020; 9: 481. doi: 10.3389/fcimb.2019.00481 PMID: 32039056
  131. Pepperell CS. Evolution of Tuberculosis Pathogenesis. Annu Rev Microbiol 2022; 76(1): 661-80. doi: 10.1146/annurev-micro-121321-093031 PMID: 35709500
  132. Fu Y, Gao K, Tao E, Li R, Yi Z. Aberrantly expressed long non‐coding RNAs In CD8 + T cells response to active tuberculosis. J Cell Biochem 2017; 118(12): 4275-84. doi: 10.1002/jcb.26078 PMID: 28422321
  133. Fu Y, Xu X, Xue J, Duan W, Yi Z. Deregulated lncRNAs in B cells from patients with active tuberculosis. PLoS One 2017; 12(1): e0170712. doi: 10.1371/journal.pone.0170712 PMID: 28125665
  134. Yi Z, Li J, Gao K, Fu Y. Identifcation of differentially expressed long non-coding RNAs in CD4+ T cells response to latent tuberculosis infection. J Infect 2014; 69(6): 558-68. doi: 10.1016/j.jinf.2014.06.016 PMID: 24975173
  135. Yao Q, Xie Y, Xu D, et al. Lnc-EST12, which is negatively regulated by mycobacterial EST12, suppresses antimycobacterial innate immunity through its interaction with FUBP3. Cell Mol Immunol 2022; 19(8): 883-97. doi: 10.1038/s41423-022-00878-x PMID: 35637281
  136. Sharbati S, Ravon F, Einspanier R, zur Bruegge J. Mycobacterium smegmatis but not mycobacterium avium subsp. hominissuis causes increased expression of the long non-coding RNA MEG3 in THP-1-derived human macrophages and associated decrease of TGF-β. Microorganisms 2019; 7(3): 63. doi: 10.3390/microorganisms7030063 PMID: 30818784
  137. Gupta P, Peter S, Jung M, et al. Analysis of long non-coding RNA and mRNA expression in bovine macrophages brings up novel aspects of Mycobacterium avium subspecies paratuberculosis infections. Sci Rep 2019; 9(1): 1571. doi: 10.1038/s41598-018-38141-x PMID: 30733564
  138. Liu Y, Xiang J, Hu X, Wang H, Sun Y. Expression profile screening and bioinformatics analysis of CircRNA, LncRNA, and mRNA in HeLa cells infected with Chlamydia muridarum. Arch Microbiol 2022; 204(6): 352. doi: 10.1007/s00203-022-02941-7 PMID: 35622163
  139. Wen Y, Chen H, Luo F, et al. Chlamydia trachomatis plasmid protein pORF5 up-regulates ZFAS1 to promote host cell survival via MAPK/p38 pathway. Front Microbiol 2020; 11: 593295. doi: 10.3389/fmicb.2020.593295 PMID: 33391210
  140. Luo F, Wen Y, Zhao L, et al. LncRNA ZEB1-AS1/miR-1224-5p/MAP4K4 axis regulates mitochondria-mediated HeLa cell apoptosis in persistent Chlamydia trachomatis infection. Virulence 2022; 13(1): 444-57. doi: 10.1080/21505594.2022.2044666 PMID: 35266440
  141. Wen Y, Luo F, Zhao L, et al. Long non-coding RNA FGD5-AS1 induced by chlamydia trachomatis infection inhibits apoptosis via Wnt/β-catenin signaling pathway. Front Cell Infect Microbiol 2021; 11: 701352. doi: 10.3389/fcimb.2021.701352 PMID: 34568091
  142. Ferrero MC, Alonso Paiva IM, Muñoz González F, Baldi PC. Pathogenesis and immune response in Brucella infection acquired by the respiratory route. Microbes Infect 2020; 22(9): 407-15. doi: 10.1016/j.micinf.2020.06.001 PMID: 32535086
  143. Celli J, de Chastellier C, Franchini DM, Pizarro-Cerda J, Moreno E, Gorvel JP. Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J Exp Med 2003; 198(4): 545-56. doi: 10.1084/jem.20030088 PMID: 12925673
  144. Gheitasi R, Jourghasemi S, Pakzad I, et al. A potential marker in brucellosis, long non coding RNA IFNG-AS1. Mol Biol Rep 2019; 46(6): 6495-500. doi: 10.1007/s11033-019-05095-w PMID: 31595441
  145. Gomez JA, Wapinski OL, Yang YW, et al. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell 2013; 152(4): 743-54. doi: 10.1016/j.cell.2013.01.015 PMID: 23415224
  146. Guan X, Hu H, Tian M, Zhuang H, Ding C, Yu S. Differentially expressed long noncoding RNAs in RAW264.7 macrophages during Brucella infection and functional analysis on the bacterial intracellular replication. Sci Rep 2022; 12(1): 21320. doi: 10.1038/s41598-022-25932-6 PMID: 36494502
  147. Wang Z, Cao Z, Wang Z. Significance of long non-coding RNA IFNG-AS1 in the progression and clinical prognosis in colon adenocarcinoma. Bioengineered 2021; 12(2): 11342-50. doi: 10.1080/21655979.2021.2003944 PMID: 34872454
  148. Chernikov OV, Moon JS, Chen A, Hua KF. Editorial: NLRP3 inflammasome: Regulatory Mechanisms, Role in Health and Disease and Therapeutic Potential. Front Immunol 2021; 12: 765199. doi: 10.3389/fimmu.2021.765199 PMID: 34616411
  149. Oeckinghaus A, Postler TS, Rao P, et al. κB-Ras proteins regulate both NF-κB-dependent inflammation and Ral-dependent proliferation. Cell Rep 2014; 8(6): 1793-807. doi: 10.1016/j.celrep.2014.08.015 PMID: 25220458
  150. Gheitasi R, Keramat F, Solgi G, Hajilooi M. Investigation of Linc-MAF-4 expression as an effective marker in brucellosis. Mol Immunol 2020; 123: 60-3. doi: 10.1016/j.molimm.2020.04.022 PMID: 32417631
  151. Collier SP, Henderson MA, Tossberg JT, Aune TM. Regulation of the Th1 genomic locus from Ifng through Tmevpg1 by T-bet. J Immunol 2014; 193(8): 3959-65. doi: 10.4049/jimmunol.1401099 PMID: 25225667

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers