Mathematical Modelling and Bioinformatics Analyses of Drug Resistance for Cancer Treatment


Cite item

Full Text

Abstract

Cancer is a leading cause of human death worldwide. Drug resistance, mainly caused by gene mutation, is a key obstacle to tumour treatment. Therefore, studying the mechanisms of drug resistance in cancer is extremely valuable for clinical applications.

:This paper aims to review bioinformatics approaches and mathematical models for determining the evolutionary mechanisms of drug resistance and investigating their functions in designing therapy schemes for cancer diseases. We focus on the models with drug resistance based on genetic mutations for cancer therapy and bioinformatics approaches to study drug resistance involving gene co-expression networks and machine learning algorithms.

:We first review mathematical models with single-drug resistance and multidrug resistance. The resistance probability of a drug is different from the order of drug administration in a multidrug resistance model. Then, we discuss bioinformatics methods and machine learning algorithms that are designed to develop gene co-expression networks and explore the functions of gene mutations in drug resistance using multi-omics datasets of cancer cells, which can be used to predict individual drug response and prognostic biomarkers.

:It was found that the resistance probability and expected number of drug-resistant tumour cells increase with the increase in the net reproductive rate of resistant tumour cells. Constrained models, such as logistical growth resistance models, can be used to identify more clinically realistic treatment strategies for cancer therapy. In addition, bioinformatics methods and machine learning algorithms can also lead to the development of effective therapy schemes.

About the authors

Lingling Li

School of Science, Xi’an Polytechnic University

Email: info@benthamscience.net

Ting Zhao

School of Science, Xi’an Polytechnic University

Email: info@benthamscience.net

Yulu Hu

School of Science, Xi’an Polytechnic University

Email: info@benthamscience.net

Shanjing Ren

School of Mathematics and Big Data, Guizhou Education University

Email: info@benthamscience.net

Tianhai Tian

School of Mathematics, Monash University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Komarova NL, Wodarz D. Drug resistance in cancer: Principles of emergence and prevention. Proc Natl Acad Sci 2005; 102(27): 9714-9. doi: 10.1073/pnas.0501870102 PMID: 15980154
  2. Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med 2002; 53(1): 615-27. doi: 10.1146/annurev.med.53.082901.103929 PMID: 11818492
  3. James CE, Hudson AL, Davey MW. Drug resistance mechanisms in helminths: Is it survival of the fittest? Trends Parasitol 2009; 25(7): 328-35. doi: 10.1016/j.pt.2009.04.004 PMID: 19541539
  4. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 2017; 168(4): 707-23. doi: 10.1016/j.cell.2017.01.017 PMID: 28187290
  5. Goldie JH, Coldman AJ. The genetic origin of drug resistance in neoplasms: Implications for systemic therapy. Cancer Res 1984; 44(9): 3643-53. PMID: 6744284
  6. Norton L, Simon R, Brereton HD, Bogden A. Predicting the course of Gompertzian growth. Nature 1976; 264(5586): 542-5. doi: 10.1038/264542a0 PMID: 1004590
  7. Shinoda T, Hayase F, Kato H. Suppression of Cell-cycle Progression during the S Phase of Rat Fibroblasts by 3-Deoxyglucosone, a Maillard Reaction Intermediate. Biosci Biotechnol Biochem 1994; 58(12): 2215-9. doi: 10.1271/bbb.58.2215
  8. Zankari E, Allesøe R, Joensen KG, Cavaco LM, Lund O, Aarestrup FM. PointFinder: A novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J Antimicrob Chemother 2017; 72(10): 2764-8. doi: 10.1093/jac/dkx217 PMID: 29091202
  9. Zehir A, Benayed R, Shah RH, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med 2017; 23(6): 703-13. doi: 10.1038/nm.4333 PMID: 28481359
  10. Luria SE, Delbrück M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 1943; 28(6): 491-511. doi: 10.1093/genetics/28.6.491 PMID: 17247100
  11. Crump KS, Hoel DG. Mathematical models for estimating mutation rates in cell populations. Biometrika 1974; 61(2): 237-52. doi: 10.1093/biomet/61.2.237
  12. Kimmel M, Axelrod DE. Mathematical models of gene amplification with applications to cellular drug resistance and tumorigenicity. Genetics 1990; 125(3): 633-44. doi: 10.1093/genetics/125.3.633 PMID: 2379824
  13. Goldie JH. Modelling the process of drug resistance. Lung Cancer 1994; 10 (Suppl. 1): S91-6. doi: 10.1016/0169-5002(94)91671-3 PMID: 7916254
  14. Goldie JH, Coldman AJ. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat Rep 1979; 63(11-12): 1727-33. PMID: 526911
  15. Maeda M, Yamashita H. A numerical approach for a discrete Markov model for progressing drug resistance of cancer. PLOS Comput Biol 2019; 15(2): e1006770. doi: 10.1371/journal.pcbi.1006770 PMID: 30779730
  16. Iwasa Y, Nowak MA, Michor F. Evolution of resistance during clonal expansion. Genetics 2006; 172(4): 2557-66. doi: 10.1534/genetics.105.049791 PMID: 16636113
  17. Haeno H, Iwasa Y, Michor F. The evolution of two mutations during clonal expansion. Genetics 2007; 177(4): 2209-21. doi: 10.1534/genetics.107.078915 PMID: 18073428
  18. Bozic I, Reiter JG, Allen B, et al. Evolutionary dynamics of cancer in response to targeted combination therapy. eLife 2013; 2: e00747.
  19. Zhang J, Cunningham JJ, Brown JS, Gatenby RA. Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer. Nat Commun 2017; 8(1): 1816. doi: 10.1038/s41467-017-01968-5 PMID: 29180633
  20. Cunningham JJ, Brown JS, Gatenby RA. Staňková K. Optimal control to develop therapeutic strategies for metastatic castrate resistant prostate cancer. J Theor Biol 2018; 459: 67-78. doi: 10.1016/j.jtbi.2018.09.022 PMID: 30243754
  21. Gatenby RA, Brown JS. Integrating evolutionary dynamics into cancer therapy. Nat Rev Clin Oncol 2020; 17(11): 675-86. doi: 10.1038/s41571-020-0411-1 PMID: 32699310
  22. Gu S, Lheureux S, Sayad A, et al. Computational modeling of ovarian cancer dynamics suggests optimal strategies for therapy and screening. Proc Natl Acad Sci USA 2021; 118(25): e2026663118. doi: 10.1073/pnas.2026663118 PMID: 34161278
  23. Nicholson MD, Antal T. Competing evolutionary paths in growing populations with applications to multidrug resistance. PLOS Comput Biol 2019; 15(4): e1006866. doi: 10.1371/journal.pcbi.1006866 PMID: 30986219
  24. Hori SS, Tong L, Swaminathan S, et al. A mathematical model of tumor regression and recurrence after therapeutic oncogene inactivation. Sci Rep 2021; 11(1): 1341. doi: 10.1038/s41598-020-78947-2
  25. Saini A, Gallo JM. Epigenetic instability may alter cell state transitions and anticancer drug resistance. PLOS Comput Biol 2021; 17(8): e1009307. doi: 10.1371/journal.pcbi.1009307 PMID: 34424912
  26. Yin A, Hasselt JG, Guchelaar HJ, et al. Anti-cancer treatment schedule optimization based on tumour dynamics modelling incorporating evolving resistance. Sci Rep 2022; 12: 1-14. doi: 10.1038/s41598-022-09014-1
  27. Tutsoy O. Pharmacological, non-pharmacological policies and mutation: An artificial intelligence based multi-dimensional policy making algorithm for controlling the casualties of the pandemic diseases. IEEE Trans Pattern Anal Mach Intell 2022; 44(12): 9477-88. doi: 10.1109/TPAMI.2021.3127674 PMID: 34767503
  28. Tutsoy O, Polat A. Linear and non-linear dynamics of the epidemics: System identification based parametric prediction models for the pandemic outbreaks. ISA Trans 2022; 124: 90-102. doi: 10.1016/j.isatra.2021.08.008 PMID: 34412892
  29. William P, Wang TY, Riely GJ, et al. Kras mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med 2018; 2: e17-45.
  30. Shamieh SE, Saleh F, Assaad S, et al. Next-generation sequencing reveals mutations in rb1, cdk4 and tp53 that may promote chemo-resistance to palbociclib in ovarian cancer. Drug Metabol Therapy 2019; p. 34.
  31. Färkkilä A, Rodríguez A, Oikkonen J, et al. Heterogeneity and clonal evolution of acquired parp inhibitor resistance in tp53-and brca1-deficient cells. Cancer Res 2021; 81(10): 2774-87. doi: 10.1158/0008-5472.CAN-20-2912 PMID: 33514515
  32. Kontomanolis EN, Koutras A, Syllaios A, et al. Role of oncogenes and tumour-suppressor genes in carcinogenesis: A review. Anticancer Res 2020; 40(11): 6009-15. doi: 10.21873/anticanres.14622 PMID: 33109539
  33. King MC, Wilson AC. Evolution at two levels in humans and chimpanzees. Science 1975; 188(4184): 107-16. doi: 10.1126/science.1090005 PMID: 1090005
  34. Welch JS, Ley TJ, Link DC, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 2012; 150(2): 264-78. doi: 10.1016/j.cell.2012.06.023 PMID: 22817890
  35. Tsimberidou AM. Targeted therapy in cancer. Cancer Chemother Pharmacol 2015; 76(6): 1113-32. doi: 10.1007/s00280-015-2861-1 PMID: 26391154
  36. Ellis LM, Hicklin DJ. VEGF-targeted therapy: Mechanisms of anti-tumour activity. Nat Rev Cancer 2008; 8(8): 579-91. doi: 10.1038/nrc2403 PMID: 18596824
  37. Crystal AS, Shaw AT, Sequist LV, et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 2014; 346(6216): 1480-6. doi: 10.1126/science.1254721 PMID: 25394791
  38. Coldman A, Goldie J. A stochastic model for the origin and treatment of tumors containing drug-resistant cells. Bull Math Biol 1986; 48(3-4): 279-92. doi: 10.1016/S0092-8240(86)90028-5 PMID: 3828558
  39. Goldie JH, Coldman AJ. Drug resistance in cancer: Mechanisms and models. J Biol Chem 1998; 938: 142-53.
  40. Coldman AJ, Goldie JH. A model for the resistance of tumor cells to cancer chemotherapeutic agents. Math Biosci 1983; 65(2): 291-307. doi: 10.1016/0025-5564(83)90066-4
  41. Komarova N. Stochastic modeling of drug resistance in cancer. J Theor Biol 2006; 239(3): 351-66. doi: 10.1016/j.jtbi.2005.08.003 PMID: 16194548
  42. Komarova NL, Wodarz D. Combination therapies against chronic myeloid leukemia: short-term versus long-term strategies. Cancer Res 2009; 69(11): 4904-10. doi: 10.1158/0008-5472.CAN-08-1959 PMID: 19458080
  43. Michor F, Nowak M, Iwasa Y. Evolution of resistance to cancer therapy. Curr Pharm Des 2006; 12(3): 261-71. doi: 10.2174/138161206775201956 PMID: 16454743
  44. Foo J, Michor F. Evolution of acquired resistance to anti-cancer therapy. J Theor Biol 2014; 355: 10-20. doi: 10.1016/j.jtbi.2014.02.025 PMID: 24681298
  45. Foo J, Michor F. Evolution of resistance to anti-cancer therapy during general dosing schedules. J Theor Biol 2010; 263(2): 179-88. doi: 10.1016/j.jtbi.2009.11.022 PMID: 20004211
  46. Foo J, Michor F. Evolution of resistance to targeted anti-cancer therapies during continuous and pulsed administration strategies. PLOS Comput Biol 2009; 5(11): e1000557. doi: 10.1371/journal.pcbi.1000557 PMID: 19893626
  47. Harnevo LE, Agur Z. The dynamics of gene amplification described as a multitype compartmental model and as a branching process. Math Biosci 1991; 103(1): 115-38. doi: 10.1016/0025-5564(91)90094-Y PMID: 1804437
  48. Sun X, Bao J, Shao Y. Mathematical modeling of therapy induced cancer drug resistance: connecting cancer mechanisms to population survival rates. Sci Rep 2016; 6(1): 22498. doi: 10.1038/srep22498 PMID: 26928089
  49. Ghosh M, Chandra P, Sinha P, Shukla JB. Modelling the spread of bacterial infectious disease with environmental effect in a logistically growing human population. Nonlinear Anal Real World Appl 2006; 7(3): 341-63. doi: 10.1016/j.nonrwa.2005.03.005
  50. Nakasu S, Nakasu Y, Fukami T, Jito J, Nozaki K. Growth curve analysis of asymptomatic and symptomatic meningiomas. J Neurooncol 2011; 102(2): 303-10. doi: 10.1007/s11060-010-0319-1 PMID: 20686821
  51. Anderson ARA, Hassanein M, Branch KM, et al. Microenvironmental independence associated with tumor progression. Cancer Res 2009; 69(22): 8797-806. doi: 10.1158/0008-5472.CAN-09-0437 PMID: 19887618
  52. Tomasetti C, Levy D. Role of symmetric and asymmetric division of stem cells in developing drug resistance. Proc Natl Acad Sci 2010; 107(39): 16766-71. doi: 10.1073/pnas.1007726107 PMID: 20826440
  53. Komarova NL, Wodarz D. Effect of cellular quiescence on the success of targeted CML therapy. PLoS One 2007; 2(10): e990. doi: 10.1371/journal.pone.0000990 PMID: 17912367
  54. Tian T, Olson S, Whitacre JM, Harding A. The origins of cancer robustness and evolvability. Integr Biol 2011; 3(1): 17-30. doi: 10.1039/C0IB00046A PMID: 20944865
  55. Fu F, Nowak MA, Bonhoeffer S. Spatial heterogeneity in drug concentrations can facilitate the emergence of resistance to cancer therapy. PLOS Comput Biol 2015; 11(3): e1004142. doi: 10.1371/journal.pcbi.1004142 PMID: 25789469
  56. Regales L, Gong Y, Shen R, et al. Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer. J Clin Invest 2009; 119(10): 3000-10. doi: 10.1172/JCI38746 PMID: 19759520
  57. Kars MD. Işeri ÖD, Gündüz U, Ural AU, Arpaci F, Molnár J. Development of rational in vitro models for drug resistance in breast cancer and modulation of MDR by selected compounds. Anticancer Res 2006; 26(6B): 4559-68. PMID: 17201178
  58. Picco N, Sahai E, Maini PK, Anderson ARA. Integrating models to quantify environment-mediated drug resistance. Cancer Res 2017; 77(19): 5409-18. doi: 10.1158/0008-5472.CAN-17-0835 PMID: 28754669
  59. Tian T, Chen A, Zhou T. Integrated pinelines for inferring gene regulatory networks from single cell data. Curr Bioinform 2022; 17(7): 559-64. doi: 10.2174/1574893617666220511234247
  60. Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 2006; 6(10): 813-23. doi: 10.1038/nrc1951 PMID: 16990858
  61. Yang W, Soares J, Greninger P, et al. Genomics of drug sensitivity in cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 2013; 41: D955-61. PMID: 23180760
  62. Weinstein JN, Collisson EA, Mills GB, et al. The cancer genome atlas pan-cancer analysis project. Nat Genet 2013; 45(10): 1113-20. doi: 10.1038/ng.2764 PMID: 24071849
  63. Seashore-Ludlow B, Rees MG, Cheah JH, et al. Harnessing connectivity in a large-scale small-molecule sensitivity dataset. Cancer Discov 2015; 5(11): 1210-23. doi: 10.1158/2159-8290.CD-15-0235 PMID: 26482930
  64. Ghandi M, Huang FW, Jané-Valbuena J, et al. Next-generation characterization of the cancer cell line encyclopedia. Nature 2019; 569(7757): 503-8. doi: 10.1038/s41586-019-1186-3 PMID: 31068700
  65. Tate JG, Bamford S, Jubb HC, et al. COSMIC: The catalogue of somatic mutations in cancer. Nucleic Acids Res 2019; 47(D1): D941-7. doi: 10.1093/nar/gky1015 PMID: 30371878
  66. Cui H, Kong H, Peng F, et al. Inferences of individual drug response-related long non-coding RNAs based on integrating multi-omics data in breast cancer. Mol Ther Nucleic Acids 2020; 20: 128-39. doi: 10.1016/j.omtn.2020.01.038 PMID: 32163894
  67. Zhang Z, Li D, Zhang H, et al. Inferences from dysregulated long non-coding RNA-mediated competing endogenous RNAs in various chemotherapy drugs and evaluation of drug response in breast cancer. Mol Ther Nucleic Acids 2020; 20: 128-39.
  68. Oh M, Park S, Lee S, et al. DRIM: A web-based system for investigating drug response at the molecular level by condition-specific multi-omics data integration. Front Genet 2020; 11: 564792. doi: 10.3389/fgene.2020.564792 PMID: 33281870
  69. Deng Y, Zhang F, Liu J, et al. Development and validation of a prognostic signature based on autophagy-related long non-coding RNA analysis in hepatocellular carcinoma. Front Med 2021; 8: 762570. doi: 10.21203/rs.3.rs-378004/v1
  70. Zhao T, Xu J, Liu L, et al. Computational identification of epigenetically regulated lncRNAs and their associated genes based on integrating genomic data. FEBS Lett 2015; 589(4): 521-31. doi: 10.1016/j.febslet.2015.01.013 PMID: 25616131
  71. Xu Y, Dong Q, Li F, et al. Identifying subpathway signatures for individualized anticancer drug response by integrating multi-omics data. J Transl Med 2019; 17(1): 255. doi: 10.1186/s12967-019-2010-4 PMID: 31387579
  72. Chen BJ, Causton HC, Mancenido D, Goddard NL, Perlstein EO, Pe’er D. Harnessing gene expression to identify the genetic basis of drug resistance. Mol Syst Biol 2009; 5(1): 310. doi: 10.1038/msb.2009.69 PMID: 19888205
  73. Qi W, Zhang Q. Gene’s co-expression network and experimental validation of molecular markers associated with the drug resistance of gastric cancer. Biomarkers Med 2020; 14(9): 761-73. doi: 10.2217/bmm-2019-0504 PMID: 32715733
  74. Wang Y, Chen L, Ju L, et al. Novel biomarkers associated with progression and prognosis of bladder cancer identified by co-expression analysis. Front Oncol 2019; 9: 1030. doi: 10.3389/fonc.2019.01030 PMID: 31681575
  75. Liu S, Wu J, Feng Y. The Prediction of Anti-cancer Drug Response by Integrating Multi-omics Data In International Conference on Intelligent Automation and Soft Computing. Cham: Springer Cham. 2021; 5: pp. 1149-56.
  76. Li YK, Hsu HM, Lin MC, et al. Genetic co-expression networks contribute to creating predictive model and exploring novel biomarkers for the prognosis of breast cancer. Sci rep-UK 2021; 11: 1-13.
  77. Neog Bora P, Baruah VJ, Borkotokey S, et al. Identifying the salient genes in microarray data: A novel game theoretic model for the co-expression network. Diagnostics 2020; 10(8): 586-93. doi: 10.3390/diagnostics10080586 PMID: 32823765
  78. Li Z, Cai S, Li H, et al. Developing a lncRNA signature to predict the radiotherapy response of lower-grade gliomas using co-expression and ceRNA network analysis. Front Oncol 2021; 11: 622880. doi: 10.3389/fonc.2021.622880 PMID: 33767991
  79. Yao C, Chen BH, Joehanes R, et al. Integromic analysis of genetic variation and gene expression identifies networks for cardiovascular disease phenotypes. Circulation 2015; 131(6): 536-49. doi: 10.1161/CIRCULATIONAHA.114.010696 PMID: 25533967
  80. Zhang J, Zhu W, Wang Q, Gu J, Huang LF, Sun X. Differential regulatory network-based quantification and prioritization of key genes underlying cancer drug resistance based on time-course RNA-seq data. PLOS Comput Biol 2019; 15(11): e1007435. doi: 10.1371/journal.pcbi.1007435 PMID: 31682596
  81. Zhao Y, Chen J, Freudenberg JM, Meng Q, Rajpal DK, Yang X. Network-based identification and prioritization of key regulators of coronary artery disease loci. Arterioscler Thromb Vasc Biol 2016; 36(5): 928-41. doi: 10.1161/ATVBAHA.115.306725 PMID: 26966275
  82. Gonçalves JP, Francisco AP, Mira NP, et al. TFRank: network-based prioritization of regulatory associations underlying transcriptional responses. Bioinformatics 2011; 27(22): 3149-57. doi: 10.1093/bioinformatics/btr546 PMID: 21965816
  83. Greener JG, Kandathil SM, Moffat L, Jones DT. A guide to machine learning for biologists. Nat Rev Mol Cell Biol 2022; 23(1): 40-55. doi: 10.1038/s41580-021-00407-0 PMID: 34518686
  84. You Y, Lai X, Pan Y, et al. Artificial intelligence in cancer target identification and drug discovery. Signal Transduct Target Ther 2022; 7(1): 156. doi: 10.1038/s41392-022-00994-0 PMID: 35538061
  85. Frejno M, Zenezini Chiozzi R, Wilhelm M, et al. Pharmacoproteomic characterisation of human colon and rectal cancer. Mol Syst Biol 2017; 13(11): 951. doi: 10.15252/msb.20177701 PMID: 29101300
  86. Frejno M, Meng C, Ruprecht B, et al. Proteome activity landscapes of tumor cell lines determine drug responses. Nat Commun 2020; 11(1): 3639. doi: 10.1038/s41467-020-17336-9 PMID: 32686665
  87. Kong J, Lee H, Kim D, et al. Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients. Nat Commun 2020; 11(1): 5485. doi: 10.1038/s41467-020-19313-8 PMID: 33127883
  88. Liu R, Zhang G, Yang Z. Towards rapid prediction of drug-resistant cancer cell phenotypes: single cell mass spectrometry combined with machine learning. Chem Commun (Camb) 2019; 55(5): 616-9. doi: 10.1039/C8CC08296K PMID: 30525135
  89. Yu L, Zhou D, Gao L, Zha Y. Prediction of drug response in multilayer networks based on fusion of multiomics data. Methods 2021; 192: 85-92. doi: 10.1016/j.ymeth.2020.08.006 PMID: 32798653
  90. Choi J, Park S, Ahn J. RefDNN: A reference drug based neural network for more accurate prediction of anticancer drug resistance. Sci rep-UK 2020; 10: 1-11. doi: 10.1038/s41598-020-58821-x
  91. Zhu Y, Brettin T, Evrard YA, et al. Ensemble transfer learning for the prediction of anti-cancer drug response. Sci rep-UK 2020; 10: 1-11. doi: 10.1038/s41598-020-74921-0
  92. Wang H, Zhao Y, Wu Y, et al. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials 2011; 32(32): 8281-90. doi: 10.1016/j.biomaterials.2011.07.032 PMID: 21807411
  93. Yu C, Liu X, Yang J, et al. Combination of immunotherapy with targeted therapy: Theory and practice in metastatic melanoma. Front Immunol 2019; 10: 990. doi: 10.3389/fimmu.2019.00990 PMID: 31134073
  94. Wu XY, Ma W, Gurung K, Guo CH. Mechanisms of tumor resistance to small-molecule vascular disrupting agents: Treatment and rationale of combination therapy. J Formos Med Assoc 2013; 112(3): 115-24. doi: 10.1016/j.jfma.2012.09.017 PMID: 23473523
  95. Xiao Y, Yin C, Wang Y, et al. FBXW 7 deletion contributes to lung tumor development and confers resistance to gefitinib therapy. Mol Oncol 2018; 12(6): 883-95. doi: 10.1002/1878-0261.12200 PMID: 29633504
  96. Garber K. Melanoma combination therapies ward off tumor resistance. Nat Biotechnol 2013; 31(8): 666-7. doi: 10.1038/nbt0813-666b PMID: 23929325
  97. Hu CMJ, Zhang L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol 2012; 83(8): 1104-11. doi: 10.1016/j.bcp.2012.01.008 PMID: 22285912
  98. Gevertz JL, Aminzare Z, Norton KA, et al. Emergence of anticancer drug resistance: Exploring the importance of the microenvironmental niche via a spatial model. Springer 2015; 158: 1-34. doi: 10.1007/978-1-4939-2782-1_1
  99. Lefebvre G, Cornelis F, Cumsille P, Colin T, Poignard C, Saut O. Spatial modelling of tumour drug resistance: The case of GIST liver metastases. Math Med Biol 2017; 34(2): 151-76. PMID: 27034422
  100. Florence D, Thomas L, Sylvain G. Evolutionary epidemiology of drug resistance, a spatial model. PLOS Comput Biol 2014; 5: e1000337.
  101. Jackson TL, Byrne HM. A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumours to chemotherapy. Math Biosci 2000; 164: 0-38.
  102. Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature 2019; 575(7782): 299-309. doi: 10.1038/s41586-019-1730-1 PMID: 31723286
  103. Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell 2008; 134(5): 703-7. doi: 10.1016/j.cell.2008.08.021 PMID: 18775299
  104. Trédan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 2007; 99(19): 1441-54. doi: 10.1093/jnci/djm135 PMID: 17895480
  105. Wu A, Loutherback K, Lambert G, et al. Cell motility and drug gradients in the emergence of resistance to chemotherapy. Proc Natl Acad Sci 2013; 110(40): 16103-8. doi: 10.1073/pnas.1314385110 PMID: 24046372
  106. Feinerman O, Veiga J, Dorfman JR, Germain RN, Altan-Bonnet G. Variability and robustness in T cell activation from regulated heterogeneity in protein levels. Science 2008; 321(5892): 1081-4. doi: 10.1126/science.1158013 PMID: 18719282

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers