A Unified Probabilistic Framework for Modeling and Inferring Spatial Transcriptomic Data


Cite item

Full Text

Abstract

Spatial transcriptomics (ST) can provide vital insights into tissue function with the spatial organization of cell types. However, most technologies have limited spatial resolution, i.e., each measured location contains a mixture of cells, which only quantify the average expression level across many cells in the location. Recently developed algorithms show the promise to overcome these challenges by integrating single-cell and spatial data. In this review, we summarize spatial transcriptomic technologies and efforts at cell-type deconvolution. Importantly, we propose a unified probabilistic framework, integrating the details of the ST data generation process and the gene expression process simultaneously for modeling and inferring spatial transcriptomic data.

About the authors

Zhiwei Huang

Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University

Email: info@benthamscience.net

Songhao Luo

Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University

Email: info@benthamscience.net

Zhenquan Zhang

Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University

Email: info@benthamscience.net

Zihao Wang

Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University

Email: info@benthamscience.net

Tianshou Zhou

Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University

Email: info@benthamscience.net

Jiajun Zhang

Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Li J, Byrne KT, Yan F, et al. Tumor cell-intrinsic factors underlie heterogeneity of immune cell infiltration and response to immunotherapy. Immunity 2018; 49(1): 178-193.e7. doi: 10.1016/j.immuni.2018.06.006 PMID: 29958801
  2. Brücher BLDM, Jamall IS. Cell-cell communication in the tumor microenvironment, carcinogenesis, and anticancer treatment. Cell Physiol Biochem 2014; 34(2): 213-43. doi: 10.1159/000362978 PMID: 25034869
  3. Berglund E, Maaskola J, Schultz N, et al. Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity. Nat Commun 2018; 9(1): 2419. doi: 10.1038/s41467-018-04724-5 PMID: 29925878
  4. Ji AL, Rubin AJ, Thrane K, et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. Cell 2020; 182(2): 497-514.e22. doi: 10.1016/j.cell.2020.05.039 PMID: 32579974
  5. Peng G, Suo S, Cui G, et al. Molecular architecture of lineage allocation and tissue organization in early mouse embryo. Nature 2019; 572(7770): 528-32. doi: 10.1038/s41586-019-1469-8 PMID: 31391582
  6. Peng G, Cui G, Ke J, Jing N. Using single-cell and spatial transcriptomes to understand stem cell lineage specification during early embryo development. Annu Rev Genomics Hum Genet 2020; 21(1): 163-81. doi: 10.1146/annurev-genom-120219-083220 PMID: 32339035
  7. Liu C, Li R, Li Y, et al. Spatiotemporal mapping of gene expression landscapes and developmental trajectories during zebrafish embryogenesis. Dev Cell 2022; 57(10): 1284-1298.e5. doi: 10.1016/j.devcel.2022.04.009 PMID: 35512701
  8. Wang M, Hu Q, Lv T, et al. High-resolution 3D spatiotemporal transcriptomic maps of developing Drosophila embryos and larvae. Dev Cell 2022; 57(10): 1271-1283.e4. doi: 10.1016/j.devcel.2022.04.006 PMID: 35512700
  9. Klein AM, Mazutis L, Akartuna I, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 2015; 161(5): 1187-201. doi: 10.1016/j.cell.2015.04.044 PMID: 26000487
  10. Zheng GXY, Terry JM, Belgrader P, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun 2017; 8(1): 14049. doi: 10.1038/ncomms14049 PMID: 28091601
  11. Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 2015; 161(5): 1202-14. doi: 10.1016/j.cell.2015.05.002 PMID: 26000488
  12. Andrews TS, Hemberg M. Identifying cell populations with scRNASeq. Mol Aspects Med 2018; 59: 114-22. doi: 10.1016/j.mam.2017.07.002 PMID: 28712804
  13. Baslan T, Hicks J. Unravelling biology and shifting paradigms in cancer with single-cell sequencing. Nat Rev Cancer 2017; 17(9): 557-69. doi: 10.1038/nrc.2017.58 PMID: 28835719
  14. Stubbington MJT, Rozenblatt-Rosen O, Regev A, Teichmann SA. Single-cell transcriptomics to explore the immune system in health and disease. Science 2017; 358(6359): 58-63. doi: 10.1126/science.aan6828 PMID: 28983043
  15. Hedlund E, Deng Q. Single-cell RNA sequencing: Technical advancements and biological applications. Mol Aspects Med 2018; 59: 36-46. doi: 10.1016/j.mam.2017.07.003 PMID: 28754496
  16. Longo SK, Guo MG, Ji AL, Khavari PA. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat Rev Genet 2021; 22(10): 627-44. doi: 10.1038/s41576-021-00370-8 PMID: 34145435
  17. Larsson L, Frisén J, Lundeberg J. Spatially resolved transcriptomics adds a new dimension to genomics. Nat Methods 2021; 18(1): 15-8. doi: 10.1038/s41592-020-01038-7 PMID: 33408402
  18. Wu SZ, Al-Eryani G, Roden DL, et al. A single-cell and spatially resolved atlas of human breast cancers. Nat Genet 2021; 53(9): 1334-47. doi: 10.1038/s41588-021-00911-1 PMID: 34493872
  19. Guilliams M, Bonnardel J, Haest B, et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 2022; 185(2): 379-396.e38. doi: 10.1016/j.cell.2021.12.018 PMID: 35021063
  20. Bäckdahl J, Franzén L, Massier L, et al. Spatial mapping reveals human adipocyte subpopulations with distinct sensitivities to insulin. Cell Metab 2021; 33(9): 1869-1882.e6. doi: 10.1016/j.cmet.2021.07.018 PMID: 34380013
  21. Mantri M, Scuderi GJ, Abedini-Nassab R, et al. Spatiotemporal single-cell RNA sequencing of developing chicken hearts identifies interplay between cellular differentiation and morphogenesis. Nat Commun 2021; 12(1): 1771. doi: 10.1038/s41467-021-21892-z PMID: 33741943
  22. Dixon EE, Wu H, Muto Y, Wilson PC, Humphreys BD. Spatially resolved transcriptomic analysis of acute kidney injury in a female murine model. J Am Soc Nephrol 2022; 33(2): 279-89. doi: 10.1681/ASN.2021081150 PMID: 34853151
  23. Andersson A, Larsson L, Stenbeck L, et al. Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions. Nat Commun 2021; 12(1): 6012. doi: 10.1038/s41467-021-26271-2 PMID: 34650042
  24. Cang Z, Nie Q. Inferring spatial and signaling relationships between cells from single cell transcriptomic data. Nat Commun 2020; 11(1): 2084. doi: 10.1038/s41467-020-15968-5 PMID: 32350282
  25. Zhu J, Fan Y, Xiong Y, et al. Delineating the dynamic evolution from preneoplasia to invasive lung adenocarcinoma by integrating single-cell RNA sequencing and spatial transcriptomics. Exp Mol Med 2022; 54(11): 2060-76. doi: 10.1038/s12276-022-00896-9 PMID: 36434043
  26. Fu R, Norris GA, Willard N, et al. Spatial transcriptomic analysis delineates epithelial and mesenchymal subpopulations and transition stages in childhood ependymoma. Neuro-oncol 2022; 25(4): 786-98. doi: 10.1093/neuonc/noac219 PMID: 36215273
  27. Zhu Y, Wu Z, Yan W, et al. Allosteric inhibition of SHP2 uncovers aberrant TLR7 trafficking in aggravating psoriasis. EMBO Mol Med 2022; 14(3): e14455. doi: 10.15252/emmm.202114455 PMID: 34936223
  28. Fawkner-Corbett D, Antanaviciute A, Parikh K, et al. Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell 2021; 184(3): 810-826.e23. doi: 10.1016/j.cell.2020.12.016 PMID: 33406409
  29. Raghubar AM, Pham DT, Tan X, et al. Spatially resolved transcriptomes of mammalian kidneys illustrate the molecular complexity and interactions of functional nephron segments. Front Med (Lausanne) 2022; 9: 873923. doi: 10.3389/fmed.2022.873923 PMID: 35872784
  30. Ferreira RM, Sabo AR, Winfree S, et al. Integration of spatial and single-cell transcriptomics localizes epithelial cell–immune cross-talk in kidney injury. JCI Insight 2021; 6(12): e147703. doi: 10.1172/jci.insight.147703 PMID: 34003797
  31. Marshall JL, Noel T, Wang QS, et al. High-resolution Slide-seqV2 spatial transcriptomics enables discovery of disease-specific cell neighborhoods and pathways. iScience 2022; 25(4): 104097. doi: 10.1016/j.isci.2022.104097 PMID: 35372810
  32. Espina V, Wulfkuhle JD, Calvert VS, et al. Laser-capture microdissection. Nat Protoc 2006; 1(2): 586-603. doi: 10.1038/nprot.2006.85 PMID: 17406286
  33. Eng CHL, Lawson M, Zhu Q, et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature 2019; 568(7751): 235-9. doi: 10.1038/s41586-019-1049-y PMID: 30911168
  34. Rodriques SG, Stickels RR, Goeva A, et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 2019; 363(6434): 1463-7. doi: 10.1126/science.aaw1219 PMID: 30923225
  35. Stickels RR, Murray E, Kumar P, et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat Biotechnol 2021; 39(3): 313-9. doi: 10.1038/s41587-020-0739-1 PMID: 33288904
  36. Brown VM, Ossadtchi A, Khan AH, et al. Multiplex three-dimensional brain gene expression mapping in a mouse model of Parkinson’s disease. Genome Res 2002; 12(6): 868-84. doi: 10.1101/gr.229002 PMID: 12045141
  37. Junker JP, Noël ES, Guryev V, et al. Genome-wide RNA Tomography in the zebrafish embryo. Cell 2014; 159(3): 662-75. doi: 10.1016/j.cell.2014.09.038 PMID: 25417113
  38. Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 2015; 348(6233): aaa6090. doi: 10.1126/science.aaa6090 PMID: 25858977
  39. Moffitt JR, Bambah-Mukku D, Eichhorn SW, et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 2018; 362(6416): eaau5324. doi: 10.1126/science.aau5324 PMID: 30385464
  40. Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, Cai L. Single-cell in situ RNA profiling by sequential hybridization. Nat Methods 2014; 11(4): 360-1. doi: 10.1038/nmeth.2892 PMID: 24681720
  41. Codeluppi S, Borm LE, Zeisel A, et al. Spatial organization of the somatosensory cortex revealed by osmFISH. Nat Methods 2018; 15(11): 932-5. doi: 10.1038/s41592-018-0175-z PMID: 30377364
  42. Lee JH, Daugharthy ER, Scheiman J, et al. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat Protoc 2015; 10(3): 442-58. doi: 10.1038/nprot.2014.191 PMID: 25675209
  43. Ke R, Mignardi M, Pacureanu A, et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nat Methods 2013; 10(9): 857-60. doi: 10.1038/nmeth.2563 PMID: 23852452
  44. Wang X, Allen WE, Wright MA, et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 2018; 361(6400): eaat5691. doi: 10.1126/science.aat5691 PMID: 29930089
  45. Ståhl PL, Salmén F, Vickovic S, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 2016; 353(6294): 78-82. doi: 10.1126/science.aaf2403 PMID: 27365449
  46. Vickovic S, Eraslan G, Salmén F, et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat Methods 2019; 16(10): 987-90. doi: 10.1038/s41592-019-0548-y PMID: 31501547
  47. Liu Y, Yang M, Deng Y, et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 2020; 183(6): 1665-1681.e18. doi: 10.1016/j.cell.2020.10.026 PMID: 33188776
  48. Su G, Qin X, Enninful A, et al. Spatial multi-omics sequencing for fixed tissue via DBiT-seq. STAR Protocols 2021; 2(2): 100532. doi: 10.1016/j.xpro.2021.100532 PMID: 34027489
  49. Fu X, Sun L, Chen JY, et al. Continuous polony gels for tissue mapping with high resolution and RNA capture efficiency. BioRxiv 2021; 2021.03. doi: 10.1101/2021.03.17.435795
  50. Cho CS, Xi J, Si Y, et al. Microscopic examination of spatial transcriptome using Seq-Scope. Cell 2021; 184(13): 3559-3572.e22. doi: 10.1016/j.cell.2021.05.010 PMID: 34115981
  51. Chen A, Liao S, Cheng M, et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 2022; 185(10): 1777-1792.e21. doi: 10.1016/j.cell.2022.04.003 PMID: 35512705
  52. Lee Y, Bogdanoff D, Wang Y, et al. XYZeq: Spatially resolved single-cell RNA sequencing reveals expression heterogeneity in the tumor microenvironment. Sci Adv 2021; 7(17): eabg4755. doi: 10.1126/sciadv.abg4755 PMID: 33883145
  53. Srivatsan SR, Regier MC, Barkan E, et al. Embryo-scale, single-cell spatial transcriptomics. Science 2021; 373(6550): 111-7. doi: 10.1126/science.abb9536 PMID: 34210887
  54. Crosetto N, Bienko M, van Oudenaarden A. Spatially resolved transcriptomics and beyond. Nat Rev Genet 2015; 16(1): 57-66. doi: 10.1038/nrg3832 PMID: 25446315
  55. Asp M, Bergenstråhle J, Lundeberg J. Spatially resolved transcriptomes—next generation tools for tissue exploration. BioEssays 2020; 42(10): 1900221. doi: 10.1002/bies.201900221 PMID: 32363691
  56. Waylen LN, Nim HT, Martelotto LG, Ramialison M. From whole-mount to single-cell spatial assessment of gene expression in 3D. Commun Biol 2020; 3(1): 602. doi: 10.1038/s42003-020-01341-1 PMID: 33097816
  57. Moses L, Pachter L. Museum of spatial transcriptomics. Nat Methods 2022; 19(5): 534-46. doi: 10.1038/s41592-022-01409-2 PMID: 35273392
  58. Strell C, Hilscher MM, Laxman N, et al. Placing RNA in context and space-methods for spatially resolved transcriptomics. FEBS J 2019; 286(8): 1468-81. doi: 10.1111/febs.14435 PMID: 29542254
  59. Liao J, Lu X, Shao X, Zhu L, Fan X. Uncovering an organ’s molecular architecture at single-cell resolution by spatially resolved transcriptomics. Trends Biotechnol 2021; 39(1): 43-58. doi: 10.1016/j.tibtech.2020.05.006 PMID: 32505359
  60. Kumar V, Ramnarayanan K, Sundar R, et al. Single-cell atlas of lineage states, tumor microenvironment, and subtype-specific expression programs in gastric cancer. Cancer Discov 2022; 12(3): 670-91. doi: 10.1158/2159-8290.CD-21-0683 PMID: 34642171
  61. Zhang M, Hu S, Min M, et al. Dissecting transcriptional heterogeneity in primary gastric adenocarcinoma by single cell RNA sequencing. Gut 2021; 70(3): 464-75. doi: 10.1136/gutjnl-2019-320368 PMID: 32532891
  62. Smillie CS, Biton M, Ordovas-Montanes J, et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 2019; 178(3): 714-730.e22. doi: 10.1016/j.cell.2019.06.029 PMID: 31348891
  63. Yang F, Wang W, Wang F, et al. scBERT as a large-scale pretrained deep language model for cell type annotation of single-cell RNA-seq data. Nat Mach Intell 2022; 4(10): 852-66. doi: 10.1038/s42256-022-00534-z
  64. Zhao T, Lyu S, Lu G, et al. SC2disease: A manually curated database of single-cell transcriptome for human diseases. Nucleic Acids Res 2021; 49(D1): D1413-9. doi: 10.1093/nar/gkaa838 PMID: 33010177
  65. Zhang X, Lan Y, Xu J, et al. CellMarker: A manually curated resource of cell markers in human and mouse. Nucleic Acids Res 2019; 47(D1): D721-8. doi: 10.1093/nar/gky900 PMID: 30289549
  66. Hartigan JA, Wong MA. Algorithm AS 136: A k-means clustering algorithm. Journal of the royal statistical society series C 1979; 28(1): 100-8.
  67. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech 2008; 2008(10): P10008. doi: 10.1088/1742-5468/2008/10/P10008
  68. Traag VA, Waltman L, van Eck NJ. From Louvain to Leiden: Guaranteeing well-connected communities. Sci Rep 2019; 9(1): 5233. doi: 10.1038/s41598-019-41695-z PMID: 30914743
  69. Rasmussen C. The infinite Gaussian mixture model. Adv Neural Inf Process Syst 1999; 12.
  70. Aran D, Looney AP, Liu L, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 2019; 20(2): 163-72. doi: 10.1038/s41590-018-0276-y PMID: 30643263
  71. de Kanter JK, Lijnzaad P, Candelli T, Margaritis T, Holstege FCP. CHETAH: A selective, hierarchical cell type identification method for single-cell RNA sequencing. Nucleic Acids Res 2019; 47(16): e95. doi: 10.1093/nar/gkz543 PMID: 31226206
  72. Andreatta M, Berenstein AJ, Carmona SJ. scGate: marker-based purification of cell types from heterogeneous single-cell RNA-seq datasets. Bioinformatics 2022; 38(9): 2642-4. doi: 10.1093/bioinformatics/btac141 PMID: 35258562
  73. Bernstein MN, Ma Z, Gleicher M, Dewey CN. CellO: comprehensive and hierarchical cell type classification of human cells with the Cell Ontology. iScience 2021; 24(1): 101913. doi: 10.1016/j.isci.2020.101913 PMID: 33364592
  74. Cable DM, Murray E, Zou LS, et al. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat Biotechnol 2022; 40(4): 517-26. doi: 10.1038/s41587-021-00830-w PMID: 33603203
  75. Andersson A, Bergenstråhle J, Asp M, et al. Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography. Commun Biol 2020; 3(1): 565. doi: 10.1038/s42003-020-01247-y PMID: 33037292
  76. Lopez R, Li B, Keren-Shaul H, et al. DestVI identifies continuums of cell types in spatial transcriptomics data. Nat Biotechnol 2022; 40(9): 1360-9. doi: 10.1038/s41587-022-01272-8 PMID: 35449415
  77. Kleshchevnikov V, Shmatko A, Dann E, et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat Biotechnol 2022; 40(5): 661-71. doi: 10.1038/s41587-021-01139-4 PMID: 35027729
  78. Miller BF, Huang F, Atta L, Sahoo A, Fan J. Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data. Nat Commun 2022; 13(1): 2339. doi: 10.1038/s41467-022-30033-z PMID: 35487922
  79. Elosua-Bayes M, Nieto P, Mereu E, Gut I, Heyn H. SPOTlight: Seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res 2021; 49(9): e50. doi: 10.1093/nar/gkab043 PMID: 33544846
  80. Dong R, Yuan GC. SpatialDWLS: Accurate deconvolution of spatial transcriptomic data. Genome Biol 2021; 22(1): 145. doi: 10.1186/s13059-021-02362-7 PMID: 33971932
  81. Song Q, Su J. DSTG: deconvoluting spatial transcriptomics data through graph-based artificial intelligence. Brief Bioinform 2021; 22(5): bbaa414. doi: 10.1093/bib/bbaa414 PMID: 33480403
  82. Ma Y, Zhou X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nat Biotechnol 2022; 40(9): 1349-59. doi: 10.1038/s41587-022-01273-7 PMID: 35501392
  83. Danaher P, Kim Y, Nelson B, et al. Advances in mixed cell deconvolution enable quantification of cell types in spatial transcriptomic data. Nat Commun 2022; 13(1): 385. doi: 10.1038/s41467-022-28020-5 PMID: 35046414
  84. Noel T, Wang QS, Greka A, Marshall JL. Principles of spatial transcriptomics analysis: a practical walk-through in kidney tissue. Front Physiol 2022; 12: 809346. doi: 10.3389/fphys.2021.809346 PMID: 35069263
  85. Kleino I. Frolovaitė P, Suomi T, Elo LL. Computational solutions for spatial transcriptomics. Comput Struct Biotechnol J 2022; 20: 4870-84. doi: 10.1016/j.csbj.2022.08.043 PMID: 36147664
  86. Zeng Z, Li Y, Li Y, Luo Y. Statistical and machine learning methods for spatially resolved transcriptomics data analysis. Genome Biol 2022; 23(1): 83. doi: 10.1186/s13059-022-02653-7 PMID: 35337374
  87. Charitakis N, Ramialison M, Nim HT. Comparative analysis of packages and algorithms for the analysis of spatially resolved transcriptomics data. Transcriptomics in Health and Disease 2022; pp. 165-86. doi: 10.1007/978-3-030-87821-4_7
  88. Li B, Zhang W, Guo C, et al. Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution. Nat Methods 2022; 19(6): 662-70. doi: 10.1038/s41592-022-01480-9 PMID: 35577954
  89. Chen J, Liu W, Luo T, et al. A comprehensive comparison on cell-type composition inference for spatial transcriptomics data. Brief Bioinform 2022; 23(4): bbac245. doi: 10.1093/bib/bbac245 PMID: 35753702
  90. Yan L, Sun X. Benchmarking and integration of methods for deconvoluting spatial transcriptomic data. Bioinformatics 2023; 39(1): btac805. doi: 10.1093/bioinformatics/btac805 PMID: 36515467
  91. Dries R, Chen J, del Rossi N, Khan MM, Sistig A, Yuan GC. Advances in spatial transcriptomic data analysis. Genome Res 2021; 31(10): 1706-18. doi: 10.1101/gr.275224.121 PMID: 34599004
  92. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 2018; 36(5): 411-20. doi: 10.1038/nbt.4096 PMID: 29608179
  93. Hao Y, Hao S, Andersen-Nissen E, et al. Integrated analysis of multimodal single-cell data. Cell 2021; 184(13): 3573-3587.e29. doi: 10.1016/j.cell.2021.04.048 PMID: 34062119
  94. Bergenstråhle J, Larsson L, Lundeberg J. Seamless integration of image and molecular analysis for spatial transcriptomics workflows. BMC Genomics 2020; 21(1): 482. doi: 10.1186/s12864-020-06832-3 PMID: 32664861
  95. Palla G, Spitzer H, Klein M, et al. Squidpy: A scalable framework for spatial omics analysis. Nat Methods 2022; 19(2): 171-8. doi: 10.1038/s41592-021-01358-2 PMID: 35102346
  96. Gayoso A, Lopez R, Xing G, et al. A python library for probabilistic analysis of single-cell omics data. Nat Biotechnol 2022; 40(2): 163-6. doi: 10.1038/s41587-021-01206-w PMID: 35132262
  97. Biancalani T, Scalia G, Buffoni L, et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nat Methods 2021; 18(11): 1352-62. doi: 10.1038/s41592-021-01264-7 PMID: 34711971
  98. Long Y, Ang KS, Li M, et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST. Nat Commun 2023; 14(1): 1155. doi: 10.1038/s41467-023-36796-3 PMID: 36859400
  99. Sarkar A, Stephens M. Separating measurement and expression models clarifies confusion in single-cell RNA sequencing analysis. Nat Genet 2021; 53(6): 770-7. doi: 10.1038/s41588-021-00873-4 PMID: 34031584
  100. Chen M , Luo S, , Cao M, , et al. Exact distributions for stochastic gene expression models with arbitrary promoter architecture and translational bursting. Phys Rev E 2022; 105(1-1): 014405. doi: 10.1103/PhysRevE.105.014405
  101. Luo S, Zhang Z, Wang Z, et al. Inferring transcriptional bursting kinetics from single-cell snapshot data using a generalized telegraph model. bioRxiv 2022. doi: 10.1101/2022.07.17.500373
  102. Zhou T, Zhang J. Analytical results for a multistate gene model. SIAM J Appl Math 2012; 72(3): 789-818. doi: 10.1137/110852887
  103. Zhang Z, Liang J, Wang Z, Zhang J, Zhou T. Modeling stochastic gene expression: From Markov to non-Markov models. Math Biosci Eng 2020; 17(5): 5304-25. doi: 10.3934/mbe.2020287 PMID: 33120554
  104. Peccoud J, Ycart B. Markovian modeling of gene-product synthesis. Theor Popul Biol 1995; 48(2): 222-34. doi: 10.1006/tpbi.1995.1027

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers