Transformer and Graph Transformer-Based Prediction of Drug-Target Interactions
- Authors: Qian M.1, Lu W.2, Zhang Y.3, Liu J.1, Wu H.1, Lu Y.1, Li H.1, Fu Q.1, Shen J.4, Xiao Y.5
-
Affiliations:
- School of Electronic and Information Engineering, Suzhou University of Science and Technology
- School of Electronic and Information Engineering,, Suzhou University of Science and Technology
- , Suzhou Industrial Park Institute of Services Outsourcing
- Provincial Key Laboratory for Computer Information Processing Technology, Soochow University
- School of Artificial Intelligence and Computer Science, JiangNan University
- Issue: Vol 19, No 5 (2024)
- Pages: 470-481
- Section: Life Sciences
- URL: https://jdigitaldiagnostics.com/1574-8936/article/view/643916
- DOI: https://doi.org/10.2174/1574893618666230825121841
- ID: 643916
Cite item
Full Text
Abstract
Background:As we all know, finding new pharmaceuticals requires a lot of time and money, which has compelled people to think about adopting more effective approaches to locate drugs. Researchers have made significant progress recently when it comes to using Deep Learning (DL) to create DTI
Methods:Therefore, we propose a deep learning model that applies Transformer to DTI prediction. The model uses a Transformer and Graph Transformer to extract the feature information of protein and compound molecules, respectively, and combines their respective representations to predict interactions.
Results:We used Human and C.elegans, the two benchmark datasets, evaluated the proposed method in different experimental settings and compared it with the latest DL model.
Conclusion:The results show that the proposed model based on DL is an effective method for the classification and recognition of DTI prediction, and its performance on the two data sets is significantly better than other DL based methods.
About the authors
Meiling Qian
School of Electronic and Information Engineering, Suzhou University of Science and Technology
Author for correspondence.
Email: info@benthamscience.net
Weizhong Lu
School of Electronic and Information Engineering,, Suzhou University of Science and Technology
Author for correspondence.
Email: info@benthamscience.net
Yu Zhang
, Suzhou Industrial Park Institute of Services Outsourcing
Email: info@benthamscience.net
Junkai Liu
School of Electronic and Information Engineering, Suzhou University of Science and Technology
Email: info@benthamscience.net
Hongjie Wu
School of Electronic and Information Engineering, Suzhou University of Science and Technology
Email: info@benthamscience.net
Yaoyao Lu
School of Electronic and Information Engineering, Suzhou University of Science and Technology
Email: info@benthamscience.net
Haiou Li
School of Electronic and Information Engineering, Suzhou University of Science and Technology
Email: info@benthamscience.net
Qiming Fu
School of Electronic and Information Engineering, Suzhou University of Science and Technology
Email: info@benthamscience.net
Jiyun Shen
Provincial Key Laboratory for Computer Information Processing Technology, Soochow University
Email: info@benthamscience.net
Yongbiao Xiao
School of Artificial Intelligence and Computer Science, JiangNan University
Email: info@benthamscience.net
References
- Stanzione F, Giangreco I, Cole JC. Use of molecular docking computational tools in drug discovery. Prog Med Chem 2021; 60: 273-343. doi: 10.1016/bs.pmch.2021.01.004 PMID: 34147204
- Liu C, Zhao J, Yang ZZ, Zhao DX. Dividing the periodic box into subdivisions with their surroundings to accelerate molecular dynamics simulation with high accuracy. J Chem Theory Comput 2020; 16(12): 7618-31. doi: 10.1021/acs.jctc.0c00808 PMID: 33231445
- Bredel M, Jacoby E. Chemogenomics: An emerging strategy for rapid target and drug discovery. Nat Rev Genet 2004; 5(4): 262-75. doi: 10.1038/nrg1317 PMID: 15131650
- Pahikkala T, Airola A, Pietilä S, et al. Toward more realistic drug-target interaction predictions. Brief Bioinform 2015; 16(2): 325-37. doi: 10.1093/bib/bbu010 PMID: 24723570
- Olayan RS, Ashoor H, Bajic VB. DDR: efficient computational method to predict drugtarget interactions using graph mining and machine learning approaches. Bioinformatics 2018; 34(7): 1164-73. doi: 10.1093/bioinformatics/btx731 PMID: 29186331
- Shen C, Ding Y, Tang J, Xu X, Guo F. An ameliorated prediction of drugtarget interactions based on multi-scale discrete wavelet transform and network features. Int J Mol Sci 2017; 18(8): 1781. doi: 10.3390/ijms18081781 PMID: 28813000
- Lavecchia A. Machine-learning approaches in drug discovery: Methods and applications. Drug Discov Today 2015; 20(3): 318-31. doi: 10.1016/j.drudis.2014.10.012 PMID: 25448759
- Zhang J, Zhu M, Chen P, Wang B. DrugRPE: Random projection ensemble approach to drug-target interaction prediction. Neurocomputing 2017; 228: 256-62. doi: 10.1016/j.neucom.2016.10.039
- Zeng X, Zhu S, Hou Y, et al. Network-based prediction of drugtarget interactions using an arbitrary-order proximity embedded deep forest. Bioinformatics 2020; 36(9): 2805-12. doi: 10.1093/bioinformatics/btaa010 PMID: 31971579
- Li L, Koh CC, Reker D, et al. Predicting protein-ligand interactions based on bow-pharmacological space and Bayesian additive regression trees. Sci Rep 2019; 9(1): 7703. doi: 10.1038/s41598-019-43125-6 PMID: 31118426
- Cichonska A, Pahikkala T, Szedmak S, et al. Learning with multiple pairwise kernels for drug bioactivity prediction. Bioinformatics 2018; 34(13): i509-18. doi: 10.1093/bioinformatics/bty277 PMID: 29949975
- Cichonska A, Ravikumar B, Parri E, et al. Computational-experimental approach to drug-target interaction mapping: A case study on kinase inhibitors. PLOS Comput Biol 2017; 13(8): e1005678. doi: 10.1371/journal.pcbi.1005678 PMID: 28787438
- Shi H, Liu S, Chen J, Li X, Ma Q, Yu B. Predicting drug-target interactions using Lasso with random forest based on evolutionary information and chemical structure. Genomics 2019; 111(6): 1839-52. doi: 10.1016/j.ygeno.2018.12.007 PMID: 30550813
- Tabei Y, Pauwels E, Stoven V, Takemoto K, Yamanishi Y. Identification of chemogenomic features from drugtarget interaction networks using interpretable classifiers. Bioinformatics 2012; 28(18): i487-94. doi: 10.1093/bioinformatics/bts412 PMID: 22962471
- Lee I, Keum J, Nam H. DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences. PLOS Comput Biol 2019; 15(6): e1007129. doi: 10.1371/journal.pcbi.1007129 PMID: 31199797
- Wang YB, You ZH, Yang S, Yi HC, Chen ZH, Zheng K. A deep learning-based method for drug-target interaction prediction based on long short-term memory neural network. BMC Med Inform Decis Mak 2020; 20(S2)(2): 49. doi: 10.1186/s12911-020-1052-0 PMID: 32183788
- Torng W, Altman RB. Graph convolutional neural networks for predicting drug-target interactions. J Chem Inf Model 2019; 59(10): 4131-49. doi: 10.1021/acs.jcim.9b00628 PMID: 31580672
- Tsubaki M, Tomii K, Sese J. Compoundprotein interaction prediction with end-to-end learning of neural networks for graphs and sequences. Bioinformatics 2019; 35(2): 309-18. doi: 10.1093/bioinformatics/bty535 PMID: 29982330
- Li Y, Qiao G, Wang K, Wang G. Drugtarget interaction predication via multi-channel graph neural networks. Brief Bioinform 2022; 23(1): bbab346. doi: 10.1093/bib/bbab346 PMID: 34661237
- Chen L, Tan X, Wang D, et al. TransformerCPI: improving compoundprotein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments. Bioinformatics 2020; 36(16): 4406-14. doi: 10.1093/bioinformatics/btaa524 PMID: 32428219
- Liu S, Wang Y, Deng Y, et al. Improved drugtarget interaction prediction with intermolecular graph transformer. Brief Bioinform 2022; 23(5): bbac162. doi: 10.1093/bib/bbac162 PMID: 35514186
- Popov P, Buslaev P, Kozlovskii I. Rationalizing viral drug target identification using computational approaches: The SARS-CoV-2 spike glycoprotein s case study. ChemRxiv preprint, version 1 2020.
- Mikolov T, Chen K, Corrado G. Efficient estimation of word representations in vector space arXiv:13013781 2013.
- Pang S, Zhang Y, Song T, Zhang X, Wang X, Rodriguez-Patón A. AMDE: A novel attention-mechanism-based multidimensional feature encoder for drugdrug interaction prediction. Brief Bioinform 2022; 23(1): bbab545. doi: 10.1093/bib/bbab545 PMID: 34965586
- Ju W, Fang Z, Gu Y. A Comprehensive survey on deep graph representation learning arXiv: 230405055 2023.
- Ju W, Liu Z, Qin Y, et al. Few-shot molecular property prediction via hierarchically structured learning on relation graphs. Neural Netw 2023; 163: 122-31. doi: 10.1016/j.neunet.2023.03.034 PMID: 37037059
- Ju W, Luo X, Ma Z, Yang J, Deng M, Zhang M. GHNN: Graph harmonic neural networks for semi-supervised graph-level classification. Neural Netw 2022; 151: 70-9. doi: 10.1016/j.neunet.2022.03.018 PMID: 35398673
- Ju W, Luo X, Qu M. TGNN: A joint semi-supervised framework for graph-level classification arXiv:230411688 2023.
- Ju W, Gu Y, Chen B, et al. Glcc: A general framework for graph-level clustering. Proc Conf AAAI Artif Intell 2023; 37(4): 4391-9. doi: 10.1609/aaai.v37i4.25559
- Wang MY. Towards efficient and scalable deep learning on graphs. ICLR workshop on representation learning on graphs and manifolds; New Orleans, Louisiana, United States 2019.
- Jiang D, Hsieh CY, Wu Z, et al. Interactiongraphnet: A novel and efficient deep graph representation learning framework for accurate proteinligand interaction predictions. J Med Chem 2021; 64(24): 18209-32. doi: 10.1021/acs.jmedchem.1c01830 PMID: 34878785
- Wu Z, Jiang D, Wang J, Hsieh CY, Cao D, Hou T. Mining toxicity information from large amounts of toxicity data. J Med Chem 2021; 64(10): 6924-36. doi: 10.1021/acs.jmedchem.1c00421 PMID: 33961429
- Vaswani A, Shazeer N, Parmar N. Attention is all you need. Adv Neural Inf Process Syst 2017; 30.
- Gehring J, Auli M, Grangier D. Convolutional sequence to sequence learning. Proc Mach Learn Res 2017; 70: 1243-52.
- Dwivedi VP, Bresson X. A generalization of transformer networks to graphs. arXiv:201209699 2020.
- Cai R, Chen X, Fang Y, Wu M, Hao Y. Dual-dropout graph convolutional network for predicting synthetic lethality in human cancers. Bioinformatics 2020; 36(16): 4458-65. doi: 10.1093/bioinformatics/btaa211 PMID: 32221609
- Liu L, Jiang H, He P. On the variance of the adaptive learning rate and beyond arXiv:190803265 2019.
- Liu H, Sun J, Guan J, Zheng J, Zhou S. Improving compoundprotein interaction prediction by building up highly credible negative samples. Bioinformatics 2015; 31(12): i221-9. doi: 10.1093/bioinformatics/btv256 PMID: 26072486
- Le NQK, Do DT, Nguyen TTD, Le QA. A sequence-based prediction of Kruppel-like factors proteins using XGBoost and optimized features. Gene 2021; 787: 145643. doi: 10.1016/j.gene.2021.145643 PMID: 33848577
- Kha QH, Ho QT, Le NQK. Identifying SNARE proteins using an alignment-free method based on multiscan convolutional neural network and PSSM profiles. J Chem Inf Model 2022; 62(19): 4820-6. doi: 10.1021/acs.jcim.2c01034 PMID: 36166351
- Li P, Li Y, Hsieh CY, et al. TrimNet: Learning molecular representation from triplet messages for biomedicine. Brief Bioinform 2021; 22(4): bbaa266. doi: 10.1093/bib/bbaa266 PMID: 33147620
- Nguyen T, Le H, Quinn TP, Nguyen T, Le TD, Venkatesh S. GraphDTA: Predicting drugtarget binding affinity with graph neural networks. Bioinformatics 2021; 37(8): 1140-7. doi: 10.1093/bioinformatics/btaa921 PMID: 33119053
- Zheng S, Li Y, Chen S, Xu J, Yang Y. Predicting drugprotein interaction using quasi-visual question answering system. Nat Mach Intell 2020; 2(2): 134-40. doi: 10.1038/s42256-020-0152-y
- Zhao T, Hu Y, Valsdottir LR, et al. Identifying debug target interactions based on graph convolutional network and deep neural network. Briefings in bioinformatics 2021; 22(2) 2141-2150.
Supplementary files
