A Novel In silico Filtration Method for Discovery of Encrypted Antimicrobial Peptides


Cite item

Full Text

Abstract

Background:Antibacterial resistance has been one of the most important causes of death in the last few decades, necessitating the need to discover new antibiotics. Antimicrobial peptides (AMPs) are among the best candidates due to their broad-spectrum and potent activity against bacteria and low probability of developing resistance against them.

Objective:In this study, we proposed a novel filtration method using knowledge-based approaches to discover encrypted AMPs within a protein sequence.

Methods:The encrypted AMPs were selected from a protein sequence, in this case, lactoferrin, based on hydrophobicity, cationicity, alpha-helix structure, helical wheel projection, and binding affinities to gram-negative and positive bacterial membranes.

Results:Six out of 20 potential encrypted AMPs were ultimately selected for further assays. Molecular docking of the selected AMPs with outer and inner membranes of gram-negative bacteria and also gram-positive bacterial membranes showed reasonable binding affinity ranging from ‘-6.7 to -7.5’ and ‘- 4.5 to -5.7’ and ‘-4.6 to -5.7’ kcal/mol, respectively. No toxicity was shown in the candidate AMPs.

Conclusion:According to in silico results, our method succeeded to discover six new encrypted AMPs from human lactoferrin, designated as lactoferrin-derived peptides (LDPs). Further in silico and experimental assays should also be performed to prove the efficiency of our knowledge-based filtration method.

About the authors

Farnoosh Barneh

Venom and Biotherapeutics Molecules Lab., Medical Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran

Email: info@benthamscience.net

Ahmad Nazarian

Venom and Biotherapeutics Molecules Lab., Medical Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran

Email: info@benthamscience.net

Rezvan Mousavi Nadoshan

Department of Marine Science, Faculty of Natural Resources and Environment, Islamic Azad University, Science and Research Branch

Email: info@benthamscience.net

Kamran Pooshang Bagheri

Venom and Biotherapeutics Molecules Lab., Medical Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran.

Author for correspondence.
Email: info@benthamscience.net

References

  1. O’Neill J. Review on antimicrobial resistance. Antimicrob resist tackling a Cris Heal wealth Nations 2014; 2014(4)
  2. Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem 2014; 6: PMC.S14459. doi: 10.4137/PMC.S14459 PMID: 25232278
  3. Capita R, Alonso-Calleja C. Antibiotic-resistant bacteria: A challenge for the food industry. Crit Rev Food Sci Nutr 2013; 53(1): 11-48. doi: 10.1080/10408398.2010.519837 PMID: 23035919
  4. Levy SB. The challenge of antibiotic resistance. Sci Am 1998; 278(3): 46-53. doi: 10.1038/scientificamerican0398-46 PMID: 9487702
  5. Jenssen H, Hamill P, Hancock REW. Peptide antimicrobial agents. Clin Microbiol Rev 2006; 19(3): 491-511. doi: 10.1128/CMR.00056-05 PMID: 16847082
  6. Aghazadeh H, Memariani H, Ranjbar R, Pooshang Bagheri K. The activity and action mechanism of novel short selective LL‐37‐derived anticancer peptides against clinical isolates of Escherichia coli. Chem Biol Drug Des 2019; 93(1): 75-83. doi: 10.1111/cbdd.13381 PMID: 30120878
  7. Shams Khozani R, Shahbazzadeh D, Harzandi N, Feizabadi MM, Pooshang Bagheri K. Kinetics study of antimicrobial peptide, melittin, in simultaneous biofilm degradation and eradication of potent biofilm producing mdr pseudomonas aeruginosa isolates. Int J Pept Res Ther 2019; 25(1): 329-38. doi: 10.1007/s10989-018-9675-z
  8. Zarghami V, Ghorbani M, Pooshang Bagheri K, Shokrgozar MA. Melittin antimicrobial peptide thin layer on bone implant chitosan-antibiotic coatings and their bactericidal properties. Mater Chem Phys 2021; 263: 124432. doi: 10.1016/j.matchemphys.2021.124432
  9. Ashby M, Petkova A, Gani J, Mikut R, Hilpert K. Use of peptide libraries for identification and optimization of novel antimicrobial peptides. Curr Top Med Chem 2016; 17(5): 537-53. doi: 10.2174/1568026616666160713125555 PMID: 27411326
  10. Sabatier JM. Antibacterial peptides. Antibiotics 2020; 9(4): 142. doi: 10.3390/antibiotics9040142 PMID: 32224942
  11. Memariani H, Shahbazzadeh D, Sabatier JM, Pooshang Bagheri K. Membrane‐active peptide PV 3 efficiently eradicates multidrug‐resistant Pseudomonas aeruginosa in a mouse model of burn infection. Acta Pathol Microbiol Scand Suppl 2018; 126(2): 114-22. doi: 10.1111/apm.12791 PMID: 29327480
  12. Bevalian P, Pashaei F, Akbari R, Pooshang Bagheri K. Eradication of vancomycin-resistant Staphylococcus aureus on a mouse model of third-degree burn infection by melittin: An antimicrobial peptide from bee venom. Toxicon 2021; 199: 49-59. doi: 10.1016/j.toxicon.2021.05.015 PMID: 34087287
  13. Koo HB, Seo J. Antimicrobial peptides under clinical investigation. Pept Sci 2019; 111(5): e24122. doi: 10.1002/pep2.24122
  14. GALE EF. Mechanisms of antibiotic action. Pharmacol Rev 1963; 15: 481-530.
  15. Akbari R, Hakemi Vala M, Hashemi A, Aghazadeh H, Sabatier JM, Pooshang Bagheri K. Action mechanism of melittin-derived antimicrobial peptides, MDP1 and MDP2, de novo designed against multidrug resistant bacteria. Amino Acids 2018; 50(9): 1231-43. doi: 10.1007/s00726-018-2596-5 PMID: 29905903
  16. Kaur-Boparai J, Sharma PK. Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein Pept Lett 2020; 27(1): 4-16. doi: 10.2174/18755305MTAwENDE80 PMID: 31438824
  17. Bulet P, Stöcklin R, Menin L. Anti-microbial peptides: From invertebrates to vertebrates. Immunol Rev 2004; 198(1): 169-84. doi: 10.1111/j.0105-2896.2004.0124.x PMID: 15199962
  18. Huan Y, Kong Q, Mou H, Yi H. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front Microbiol 2020; 11: 582779. doi: 10.3389/fmicb.2020.582779 PMID: 33178164
  19. Cesaro A, Torres MDT, Gaglione R, et al. Synthetic antibiotic derived from sequences encrypted in a protein from human plasma. ACS Nano 2022; 16(2): 1880-95. doi: 10.1021/acsnano.1c04496 PMID: 35112568
  20. Auestad N, Layman DK. Dairy bioactive proteins and peptides: A narrative review. Nutr Rev 2021; 79(S2): 36-47. doi: 10.1093/nutrit/nuab097
  21. Torres MDT, Melo MCR, Crescenzi O, Notomista E, de la Fuente-Nunez C, de la Fuente-Nunez C. Mining for encrypted peptide antibiotics in the human proteome. Nat Biomed Eng 2021; 6(1): 67-75. doi: 10.1038/s41551-021-00801-1 PMID: 34737399
  22. Santos MFS, Freitas CS, Verissimo da Costa GC, Pereira PR, Paschoalin VMF. Identification of antibacterial peptide candidates encrypted in stress-related and metabolic saccharomyces cerevisiae proteins. Pharmaceuticals 2022; 15(2): 163. doi: 10.3390/ph15020163
  23. Gawde U, Chakraborty S, Waghu FH, et al. CAMPR4: A database of natural and synthetic antimicrobial peptides. Nucleic Acids Res 2023; 51(D1): D377-83. doi: 10.1093/nar/gkac933 PMID: 36370097
  24. Kopeć K, Pędziwiatr M, Gront D, et al. Comparison of α-helix and β-sheet structure adaptation to a quantum dot geometry: Toward the identification of an optimal motif for a protein nanoparticle cover. ACS Omega 2019; 4(8): 13086-99. doi: 10.1021/acsomega.9b00505 PMID: 31460436
  25. Abrusán G, Marsh JA. Alpha helices are more robust to mutations than beta strands. PLOS Comput Biol 2016; 12(12): e1005242. doi: 10.1371/journal.pcbi.1005242 PMID: 27935949
  26. Zelezetsky I, Tossi A. Alpha-helical antimicrobial peptides—Using a sequence template to guide structure–activity relationship studies. Biochim Biophys Acta Biomembr 2006; 1758(9): 1436-49. doi: 10.1016/j.bbamem.2006.03.021 PMID: 16678118
  27. Eisapoor SS, Jamili S, Shahbazzadeh D, Ghavam Mostafavi P, Pooshang Bagheri K. A new, high yield, rapid, and cost‐effective protocol to deprotection of cysteine‐rich conopeptide, omega‐conotoxin MVIIA. Chem Biol Drug Des 2016; 87(5): 687-93. doi: 10.1111/cbdd.12702 PMID: 26662374
  28. Stadtman ER, Moskovitz J, Levine RL. Oxidation of methionine residues of proteins: biological consequences. Antioxid Redox Signal 2003; 5(5): 577-82. doi: 10.1089/152308603770310239 PMID: 14580313
  29. Bateman A, Martin M-J, Orchard S, et al. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res 2021; 49(D1): D480-9. doi: 10.1093/nar/gkaa1100 PMID: 33237286
  30. Zhou X, Zheng W, Li Y, et al. I-TASSER-MTD: A deep-learning-based platform for multi-domain protein structure and function prediction. Nat Protoc 2022; 17(10): 2326-53. doi: 10.1038/s41596-022-00728-0 PMID: 35931779
  31. DeLano WL. The PyMol molecular graphics system. Version 20 Schrodinger. Inc. New York 2017.
  32. Schiffer M, Edmundson AB. Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. Biophys J 1967; 7(2): 121-35. doi: 10.1016/S0006-3495(67)86579-2 PMID: 6048867
  33. Gautier R, Douguet D, Antonny B, Drin G. HELIQUEST: a web server to screen sequences with specific α-helical properties. Bioinformatics 2008; 24(18): 2101-2. doi: 10.1093/bioinformatics/btn392 PMID: 18662927
  34. Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2009; 31(2): NA. doi: 10.1002/jcc.21334 PMID: 19499576
  35. Seeliger D, de Groot BL. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des 2010; 24(5): 417-22. doi: 10.1007/s10822-010-9352-6 PMID: 20401516
  36. Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J Chem Inf Model 2021; 61(8): 3891-8. doi: 10.1021/acs.jcim.1c00203 PMID: 34278794
  37. Lee J, Hitzenberger M, Rieger M, Kern NR, Zacharias M, Im W. CHARMM-GUI supports the Amber force fields. J Chem Phys 2020; 153(3): 035103. doi: 10.1063/5.0012280 PMID: 32716185
  38. Lindberg B, Lindh F, Lönngren J, Lindberg AA, Svenson SB. Structural studies of the O-specific side-chain of the lipopolysaccharide from Escherichia coli O 55. Carbohydr Res 1981; 97(1): 105-12. doi: 10.1016/S0008-6215(00)80528-5 PMID: 7030487
  39. Micciulla S, Gerelli Y, Schneck E. Structure and conformation of wild-type bacterial lipopolysaccharide layers at air-water interfaces. Biophys J 2019; 116(7): 1259-69. doi: 10.1016/j.bpj.2019.02.020 PMID: 30878200
  40. Wei L, Ye X, Sakurai T, Mu Z, Wei L. ToxIBTL: prediction of peptide toxicity based on information bottleneck and transfer learning. Bioinformatics 2022; 38(6): 1514-24. doi: 10.1093/bioinformatics/btac006 PMID: 34999757
  41. Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 2016; 44(D1): D1087-93. doi: 10.1093/nar/gkv1278 PMID: 26602694
  42. Okella H, Georrge JJ, Ochwo S, et al. New putative antimicrobial candidates: In silico design of fish-derived antibacterial peptide-motifs. Front Bioeng Biotechnol 2020; 8: 604041. doi: 10.3389/fbioe.2020.604041 PMID: 33344436
  43. Saint Jean KD, Henderson KD, Chrom CL, Abiuso LE, Renn LM, Caputo GA. Effects of hydrophobic amino acid substitutions on antimicrobial peptide behavior. Probiotics Antimicrob Proteins 2018; 10(3): 408-19. doi: 10.1007/s12602-017-9345-z PMID: 29103131
  44. Tossi A, Sandri L, Giangaspero A. Amphipathic, α-helical antimicrobial peptides. Biopolymers 2000; 55(1): 4-30. doi: 10.1002/1097-0282(2000)55:13.0.CO;2-M PMID: 10931439
  45. Zhang QY, Yan ZB, Meng YM, et al. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Mil Med Res 2021; 8(1): 48. doi: 10.1186/s40779-021-00343-2 PMID: 34496967
  46. Waghu FH, Idicula-Thomas S. Collection of antimicrobial peptides database and its derivatives: Applications and beyond. Protein Sci 2020; 29(1): 36-42. doi: 10.1002/pro.3714 PMID: 31441165

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers