Bioinformatic Resources for Plant Genomic Research


Cite item

Full Text

Abstract

Genome assembly and annotation are crucial steps in plant genomics research as they provide valuable insights into plant genetic makeup, gene regulation, evolutionary history, and biological processes. In the emergence of high-throughput sequencing technologies, a plethora of genome assembly tools have been developed to meet the diverse needs of plant genome researchers. Choosing the most suitable tool to suit a specific research need can be daunting due to the complex and varied nature of plant genomes and reads from the sequencers. To assist informed decision-making in selecting the appropriate genome assembly and annotation tool(s), this review offers an extensive overview of the most widely used genome and transcriptome assembly tools. The review covers the specific information on each tool in tabular data, and the data types it can process. In addition, the review delves into transcriptome assembly tools, plant resource databases, and repositories (12 for Arabidopsis, 9 for Rice, 5 for Tomato, and 8 general use resources), which are vital for gene expression profiling and functional annotation and ontology tools that facilitate data integration and analysis.

About the authors

Suvanish Kumar Valsala Sudarsanan

, Accubits Invent Pvt. Ltd.

Email: info@benthamscience.net

Nidhin Sreekumar

, Accubits Invent Pvt. Ltd.

Author for correspondence.
Email: info@benthamscience.net

References

  1. Bevan M, Walsh S. The Arabidopsis genome: A foundation for plant research. Genome Res 2005; 15(12): 1632-42. doi: 10.1101/gr.3723405 PMID: 16339360
  2. Doherty C, Friesner J, Gregory B, et al. Arabidopsis bioinformatics resources: The current state, challenges, and priorities for the future. Plant Direct 2019; 3(1): e00109. doi: 10.1002/pld3.109 PMID: 31245752
  3. Wong MML, Cannon CH, Wickneswari R. Development of high-throughput SNP-based genotyping in Acacia auriculiformis x A. mangium hybrids using short-read transcriptome data. BMC Genomics 2012; 13(1): 726. doi: 10.1186/1471-2164-13-726 PMID: 23265623
  4. Parry G. From Bench to Bountiful Harvests Multinational Arabidopsis Steering Committee (MASC) Design and editing Cover images taken from Open Access publications, MASC. 1. 2021. Available from: https://elifesciences.org/articles/43284 (Accessed on: March 20, 2023).
  5. Srivastava M, Malviya N, Dandekar T. Application of biotechnology and bioinformatics tools in plant–fungus interactions. Plant Genomics Biotechnol. 2015; Vol. II: pp. 49-64. doi: 10.1007/978-81-322-2283-5_3
  6. Parthasarathy S. Bioinformatics: Application to genomics. Plant Genomics Biotechnol. 2015; Vol. II: pp. 279-300. doi: 10.1007/978-81-322-2283-5_13
  7. Gomes LHF, Alves-Ferreira M, Carels N. Functional genomics. Plant Genomics Biotechnol. 2015; Vol. II: pp. 223-45. doi: 10.1007/978-81-322-2283-5_10
  8. Sayers EW, Beck J, Brister JR, et al. Database resources of the national center for biotechnology information. Nucleic Acids Res 2020; 48(D1): D9-D16. doi: 10.1093/nar/gkz899 PMID: 31602479
  9. Tan YC, Kumar AU, Wong YP, Ling APK. Bioinformatics approaches and applications in plant biotechnology. J Genet Eng Biotechnol 2022; 20(1): 106. doi: 10.1186/s43141-022-00394-5 PMID: 35838847
  10. Martin FJ, Amode MR, Aneja A, et al. Ensembl 2023. Nucleic Acids Res 2023; 51(D1): D933-41. doi: 10.1093/nar/gkac958 PMID: 36318249
  11. Cunningham F, Allen JE, Allen J, et al. Ensembl 2022. Nucleic Acids Res 2022; 50(D1): D988-95. doi: 10.1093/nar/gkab1049 PMID: 34791404
  12. Glez-Peña D, Graña O, Fdez-Riverola F, Pisano DG. Building a GATK-based tool for methylation analysis in next-generation bisulfite sequencing experiments. Adv Intell Syst Comput 2011; 93: 87-91. doi: 10.1007/978-3-642-19914-1_13
  13. Basantani MK, Gupta D, Mehrotra R, Mehrotra S, Vaish S, Singh A. An update on bioinformatics resources for plant genomics research. Curr Plant Biol 2017; 11-12: 33-40. doi: 10.1016/j.cpb.2017.12.002
  14. Bahadur B, Rajam MV, Sahijram L, Krishnamurthy KV. Plant biology and biotechnology: Volume II: Plant genomics and biotechnology. India: Springer 2015. doi: 10.1007/978-81-322-2283-5/COVER
  15. Shabir HW. Recent Approaches in Omics for Plant Resilience to Climate Change. New York: Springer International Publishing 2019.
  16. Chan KL, Rosli R, Tatarinova TV, Hogan M, Firdaus-Raih M, Low ETL. Seqping: Gene prediction pipeline for plant genomes using self-training gene models and transcriptomic data. BMC Bioinformatics 2017; 18(S1): 1-7. doi: 10.1186/s12859-016-1426-6 PMID: 28466793
  17. Baker M. De novo genome assembly: What every biologist should know. Nat Methods 2012; 94(9): 333-7. doi: 10.1038/nmeth.1935
  18. Ong Q, Nguyen P, Phuong TN, Le L. Bioinformatics approach in plant genomic research. Curr Genomics 2016; 17(4): 368-78. doi: 10.2174/1389202917666160331202956 PMID: 27499685
  19. Meng Y, Lei Y, Gao J, et al. Genome sequence assembly algorithms and misassembly identification methods. Mol Biol Rep 2022; 49(11): 11133-48. doi: 10.1007/s11033-022-07919-8 PMID: 36151399
  20. Cherukuri Y, Janga SC. Benchmarking of De novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches. BMC Genomics 2016; 17(S7): 507. doi: 10.1186/s12864-016-2895-8 PMID: 27556636
  21. Sohn J, Nam JW. The present and future of De novo whole-genome assembly. Brief Bioinform 2016; 19(1): bbw096. doi: 10.1093/bib/bbw096 PMID: 27742661
  22. Li Z, Chen Y, Mu D, et al. Comparison of the two major classes of assembly algorithms: Overlap-layout-consensus and de-bruijn-graph. Brief Funct Genomics 2012; 11(1): 25-37. doi: 10.1093/bfgp/elr035 PMID: 22184334
  23. Davuluri RV, Sun H, Palaniswamy SK, et al. AGRIS: Arabidopsis gene regulatory information server, an information resource of Arabidopsis cis-regulatory elements and transcription factors. BMC Bioinformatics 2003; 4(1): 25. doi: 10.1186/1471-2105-4-25 PMID: 12820902
  24. Imelfort M, Edwards D. De novo sequencing of plant genomes using second-generation technologies. Brief Bioinform 2009; 10(6): 609-18. doi: 10.1093/bib/bbp039 PMID: 19933209
  25. Belser C, Baurens FC, Noel B, et al. Telomere-to-telomere gapless chromosomes of banana using nanopore sequencing. Commun Biol 2021; 41(4): 1-12. doi: 10.1038/s42003-021-02559-3
  26. Nurk S, Koren S, Rhie A, et al. The complete sequence of a human genome. Science 2022; 376(6588): 44-53.
  27. Deng Y, Liu S, Zhang Y, et al. A telomere-to-telomere gap-free reference genome of watermelon and its mutation library provide important resources for gene discovery and breeding. Mol Plant 2022; 15(8): 1268-84. doi: 10.1016/j.molp.2022.06.010
  28. Garg P, Jaiswal P. Databases and bioinformatics tools for rice research. Curr Plant Biol 2016; 7-8: 39-52. doi: 10.1016/j.cpb.2016.12.006
  29. Behera S, Voshall A, Moriyama EN. Plant transcriptome assembly: Review and benchmarking. In: Bioinformatics. Brisbane (AU): Exon Publications 2021; pp. 109-30. doi: 10.36255/exonpublications.bioinformatics.2021.ch7 PMID: 33877767
  30. Voshall A, Moriyama EN. Next-generation transcriptome assembly and analysis: Impact of ploidy. Methods 2020; 176: 14-24. doi: 10.1016/j.ymeth.2019.06.001 PMID: 31176772
  31. Pombo MA, Ramos RN, Zheng Y, Fei Z, Martin GB, Rosli HG. Transcriptome-based identification and validation of reference genes for plant-bacteria interaction studies using Nicotiana benthamiana. Sci Reports 2019; 91(9): 1-10. doi: 10.1038/s41598-018-38247-2
  32. Tu M, Zeng J, Zhang J, Fan G, Song G. Unleashing the power within short-read RNA-seq for plant research: Beyond differential expression analysis and toward regulomics. Front Plant Sci 2022; 13: 1038109. doi: 10.3389/fpls.2022.1038109 PMID: 36570898
  33. Pollier J, Rombauts S, Goossens A. Analysis of RNA-Seq data with TopHat and Cufflinks for genome-wide expression analysis of jasmonate-treated plants and plant cultures. Methods Mol Biol 2013; 1011: 305-15. doi: 10.1007/978-1-62703-414-2_24 PMID: 23616006
  34. Maretty L, Sibbesen JA, Krogh A. Bayesian transcriptome assembly. Genome Biol 2014; 15(10): 501. doi: 10.1186/s13059-014-0501-4 PMID: 25367074
  35. Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, Pertea M. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol 2019; 20(1): 278. doi: 10.1186/s13059-019-1910-1 PMID: 31842956
  36. Liu J, Yu T, Jiang T, Li G. TransComb: Genome-guided transcriptome assembly via combing junctions in splicing graphs. Genome Biol 2016; 17(1): 213. doi: 10.1186/s13059-016-1074-1 PMID: 27760567
  37. Shao M, Kingsford C. Accurate assembly of transcripts through phase-preserving graph decomposition. Nat Biotechnol 2017; 35(12): 1167-9. doi: 10.1038/nbt.4020 PMID: 29131147
  38. Grabherr MG, Haas BJ, Yassour M, et al. Trinity: Reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol 2011; 29: 644. doi: 10.1038/nbt.1883 PMID: 21572440
  39. Peng Y, Leung HCM, Yiu SM, Lv MJ, Zhu XG, Chin FYL. IDBA-tran: A more robust De novo de Bruijn graph assembler for transcriptomes with uneven expression levels. Bioinformatics 2013; 29(13): i326-34. doi: 10.1093/bioinformatics/btt219 PMID: 23813001
  40. Xie Y, Wu G, Tang J, et al. SOAPdenovo-Trans: De novo transcriptome assembly with short RNA-Seq reads. Bioinformatics 2014; 30(12): 1660-6. doi: 10.1093/bioinformatics/btu077 PMID: 24532719
  41. Bushmanova E, Antipov D, Lapidus A, Prjibelski AD. rnaSPAdes: A De novo transcriptome assembler and its application to RNA-Seq data. Gigascience 2019; 8(9): giz100. doi: 10.1093/gigascience/giz100 PMID: 31494669
  42. Limasset A, Cazaux B, Rivals E, Peterlongo P. Read mapping on de Bruijn graphs. BMC Bioinformatics 2016; 17(1): 237. doi: 10.1186/s12859-016-1103-9 PMID: 27306641
  43. Zerbino DR, Birney E. Velvet: Algorithms for De novo short read assembly using de Bruijn graphs. Genome Res 2008; 18(5): 821-9. doi: 10.1101/gr.074492.107 PMID: 18349386
  44. Bankevich A, Nurk S, Antipov D, et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19(5): 455-77. doi: 10.1089/cmb.2012.0021 PMID: 22506599
  45. Brazma A. Minimum information about a microarray experiment (MIAME)--successes, failures, challenges. ScientificWorldJournal 2009; 9: 420-3. doi: 10.1100/tsw.2009.57 PMID: 19484163
  46. Rustici G, Williams E, Barzine M, et al. Transcriptomics data availability and reusability in the transition from microarray to next-generation sequencing BioRxiv 2021; 2020.12.31.425022. doi: 10.1101/2020.12.31.425022
  47. Wang L, Wang S, Li W. RSeQC: Quality control of RNA-seq experiments. Bioinformatics 2012; 28(16): 2184-5. doi: 10.1093/bioinformatics/bts356 PMID: 22743226
  48. Joshi NA, Fass JN. Sickle: A sliding-window, adaptive, qualitybased trimming tool for FastQ files (Version 1.33). 2011. Available from: https://github.com/najoshi/sickle (Accessed on: May 17, 2023).
  49. Chen C, Khaleel SS, Huang H, Wu CH. Software for pre-processing Illumina next-generation sequencing short read sequences. Source Code Biol Med 2014; 9(1): 8. doi: 10.1186/1751-0473-9-8 PMID: 24955109
  50. Sheikhizadeh S, de Ridder D. ACE: Accurate correction of errors using K -mer tries. Bioinformatics 2015; 31(19): 3216-8. doi: 10.1093/bioinformatics/btv332 PMID: 26026137
  51. Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30(15): 2114-20. doi: 10.1093/bioinformatics/btu170 PMID: 24695404
  52. Pérez-Rubio P, Lottaz C, Engelmann JC. FastqPuri: high-performance preprocessing of RNA-seq data. BMC Bioinformatics 2019; 20(1): 226. doi: 10.1186/s12859-019-2799-0 PMID: 31053060
  53. Sun K. Ktrim: an extra-fast and accurate adapter- and quality-trimmer for sequencing data. Bioinformatics 2020; 36(11): 3561-2. doi: 10.1093/bioinformatics/btaa171 PMID: 32159761
  54. Lim EC, Müller J, Hagmann J, Henz SR, Kim ST, Weigel D. Trowel: A fast and accurate error correction module for Illumina sequencing reads. Bioinformatics 2014; 30(22): 3264-5. doi: 10.1093/bioinformatics/btu513 PMID: 25075116
  55. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015; 31(19): 3210-2. doi: 10.1093/bioinformatics/btv351 PMID: 26059717
  56. Tang S, Lomsadze A, Borodovsky M. Identification of protein coding regions in RNA transcripts. Nucleic Acids Res 2015; 43(12): e78-8. doi: 10.1093/nar/gkv227 PMID: 25870408
  57. Smith-Unna R, Boursnell C, Patro R, Hibberd JM, Kelly S. TransRate: Reference-free quality assessment of De novo transcriptome assemblies. Genome Res 2016; 26(8): 1134-44. doi: 10.1101/gr.196469.115 PMID: 27252236
  58. Li W, Godzik A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006; 22(13): 1658-9. doi: 10.1093/bioinformatics/btl158 PMID: 16731699
  59. Geniza M, Jaiswal P. Tools for building De novo transcriptome assembly. Curr Plant Biol 2017; 11-12: 41-5. doi: 10.1016/j.cpb.2017.12.004
  60. Poole RL. The TAIR database. Methods Mol Biol 2005; 406: 179-212. doi: 10.1007/978-1-59745-535-0_8 PMID: 18287693
  61. Garcia-Hernandez M, Berardini T, Chen G, et al. TAIR: A resource for integrated Arabidopsis data. Funct Integr Genomics 2002; 2(6): 239-53. doi: 10.1007/s10142-002-0077-z PMID: 12444417
  62. Reiser L, Subramaniam S, Zhang P, Berardini T. Using the arabidopsis information resource (TAIR) to find information about arabidopsis genes. Curr Protoc 2022; 2(10): e574. doi: 10.1002/cpz1.574 PMID: 36200836
  63. Zhu W, Schlueter SD, Brendel V. Refined annotation of the Arabidopsis genome by complete expressed sequence tag mapping. Plant Physiol 2003; 132(2): 469-84. doi: 10.1104/pp.102.018101 PMID: 12805580
  64. Schwacke R, Schneider A, van der Graaff E, et al. ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 2003; 131(1): 16-26. doi: 10.1104/pp.011577 PMID: 12529511
  65. Schwacke R, Flügge UI, Kunze R. Plant membrane proteome databases. Plant Physiol Biochem 2004; 42(12): 1023-34. doi: 10.1016/j.plaphy.2004.09.011 PMID: 15707839
  66. Schwacke R, Flügge UI. Identification and characterization of plant membrane proteins using ARAMEMNON. Methods Mol Biol 2018; 1696: 249-59. doi: 10.1007/978-1-4939-7411-5_17
  67. Gustafson AM, Allen E, Givan S, Smith D, Carrington JC, Kasschau KD. ASRP: The arabidopsis small RNA project database. Nucleic Acids Res 2004; 33(Database issue): D637-40. doi: 10.1093/nar/gki127 PMID: 15608278
  68. Obayashi T, Hayashi S, Saeki M, Ohta H, Kinoshita K. ATTED-II provides coexpressed gene networks for Arabidopsis. Nucleic Acids Res 2009; 37(Database): D987-91. doi: 10.1093/nar/gkn807 PMID: 18953027
  69. Choudhury A, Lahiri A. Arabidopsis thaliana regulatory element analyzer. Bioinformatics 2008; 24(19): 2263-4. doi: 10.1093/bioinformatics/btn417 PMID: 18694893
  70. Steffens NO, Galuschka C, Schindler M, Bülow L, Hehl R. AthaMap: An online resource for in silico transcription factor binding sites in the Arabidopsis thaliana genome. Nucleic Acids Res 2004; 32(90001): 368D-72. doi: 10.1093/nar/gkh017 PMID: 14681436
  71. Bülow L, Brill Y, Hehl R. AthaMap-assisted transcription factor target gene identification in Arabidopsis thaliana. Database 2010; 2010(0): baq034. doi: 10.1093/database/baq034 PMID: 21177332
  72. Gauthier NP, Larsen ME, Wernersson R, et al. Cyclebase.org a comprehensive multi-organism online database of cell-cycle experiments. Nucleic Acids Res 2007; 36(Database): D854-9. doi: 10.1093/nar/gkm729 PMID: 17940094
  73. Santos A, Wernersson R, Jensen LJ. Cyclebase 3.0: A multi-organism database on cell-cycle regulation and phenotypes. Nucleic Acids Res 2015; 43(D1): D1140-4. doi: 10.1093/nar/gku1092 PMID: 25378319
  74. Dèrozier S, Samson F, Tamby JP, et al. Exploration of plant genomes in the FLAGdb++ environment. Plant Methods 2011; 7(1): 8. doi: 10.1186/1746-4811-7-8 PMID: 21447150
  75. Samson F, Brunaud V, Duchêne S, et al. FLAGdb++: A database for the functional analysis of the Arabidopsis genome. Nucleic Acids Res 2004; 32(90001): 347D-50. doi: 10.1093/nar/gkh134 PMID: 14681431
  76. Li Y, Rosso MG, Viehoever P, Weisshaar B. GABI-Kat SimpleSearch: An Arabidopsis thaliana T-DNA mutant database with detailed information for confirmed insertions. Nucleic Acids Res 2007; 35(Database): D874-8. doi: 10.1093/nar/gkl753 PMID: 17062622
  77. Kleinboelting N, Huep G, Kloetgen A, Viehoever P, Weisshaar B. GABI-Kat SimpleSearch: New features of the Arabidopsis thaliana T-DNA mutant database. Nucleic Acids Res 2012; 40(D1): D1211-5. doi: 10.1093/nar/gkr1047 PMID: 22080561
  78. Kawahara Y, de la Bastide M, Hamilton JP, et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 2013; 6(1): 4. doi: 10.1186/1939-8433-6-4 PMID: 24280374
  79. Lee T, Oh T, Yang S, et al. RiceNet v2: An improved network prioritization server for rice genes. Nucleic Acids Res 2015; 43(W1): W122-7. doi: 10.1093/nar/gkv253 PMID: 25813048
  80. Sun C, Hu Z, Zheng T, et al. RPAN: rice pan-genome browser for ∼3000 rice genomes. Nucleic Acids Res 2017; 45(2): 597-605. doi: 10.1093/nar/gkw958 PMID: 27940610
  81. Shang L, Li X, He H, et al. A super pan-genomic landscape of rice. Cell Res 2022; 32(10): 878-96. doi: 10.1038/s41422-022-00685-z PMID: 35821092
  82. Sakai H, Lee SS, Tanaka T, et al. Rice Annotation Project Database (RAP-DB): An integrative and interactive database for rice genomics. Plant Cell Physiol 2013; 54(2): e6. doi: 10.1093/pcp/pcs183 PMID: 23299411
  83. Mueller LA, Solow TH, Taylor N, et al. The SOL genomics network: A comparative resource for Solanaceae biology and beyond. Plant Physiol 2005; 138(3): 1310-7. doi: 10.1104/pp.105.060707 PMID: 16010005
  84. Fernandez-Pozo N, Menda N, Edwards JD, et al. The Sol Genomics Network (SGN)—from genotype to phenotype to breeding. Nucleic Acids Res 2015; 43(D1): D1036-41. doi: 10.1093/nar/gku1195 PMID: 25428362
  85. Tecle IY, Menda N, Buels RM, van der Knaap E, Mueller LA. solQTL: A tool for QTL analysis, visualization and linking to genomes at SGN database. BMC Bioinformatics 2010; 11(1): 525. doi: 10.1186/1471-2105-11-525 PMID: 20964836
  86. Fei Z, Joung JG, Tang X, et al. Tomato functional genomics database: A comprehensive resource and analysis package for tomato functional genomics. Nucleic Acids Res 2011; 39(Database): D1156-63. doi: 10.1093/nar/gkq991 PMID: 20965973
  87. Fei Z, Tang X, Alba R, Giovannoni J. Tomato Expression Database (TED): a suite of data presentation and analysis tools. Nucleic Acids Res 2006; 34(90001): D766-70. doi: 10.1093/nar/gkj110 PMID: 16381976
  88. Grennan AK. MoTo DB: A metabolic database for tomato. Plant Physiol 2009; 151(4): 1701-2. doi: 10.1104/pp.109.900308 PMID: 19965978
  89. Moco S, Bino RJ, Vorst O, et al. A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol 2006; 141(4): 1205-18. doi: 10.1104/pp.106.078428 PMID: 16896233
  90. Ara T, Sakurai N, Takahashi S, et al. TOMATOMET: A metabolome database consists of 7118 accurate mass values detected in mature fruits of 25 tomato cultivars. Plant Direct 2021; 5(4): e00318. doi: 10.1002/pld3.318 PMID: 33969254
  91. Wegrzyn JL, Lee JM, Tearse BR, Neale DB. TreeGenes: A forest tree genome database. Int J Plant Genomics 2008; 2008: 1-7. doi: 10.1155/2008/412875 PMID: 18725987
  92. Fussi B, Westergren M, Aravanopoulos F, et al. Forest genetic monitoring: An overview of concepts and definitions. Environ Monit Assess 2016; 188(8): 493. doi: 10.1007/s10661-016-5489-7 PMID: 27473107
  93. Chen J, Li L, Milesi P, et al. Genomic data provide new insights on the demographic history and the extent of recent material transfers in Norway spruce. Evol Appl 2019; 12(8): 1539-51. doi: 10.1111/eva.12801 PMID: 31462913
  94. Beech E, Rivers M, Oldfield S, Smith PP. GlobalTreeSearch: The first complete global database of tree species and country distributions. J Sustain Forestry 2017; 36(5): 454-89. doi: 10.1080/10549811.2017.1310049
  95. Conte MG, Gaillard S, Lanau N, Rouard M, Périn C. GreenPhylDB: A database for plant comparative genomics. Nucleic Acids Res 2007; 36(Database): D991-8. doi: 10.1093/nar/gkm934 PMID: 17986457
  96. Yesson C, Brewer PW, Sutton T, et al. How global is the global biodiversity information facility? PLoS One 2007; 2(11): e1124. doi: 10.1371/journal.pone.0001124 PMID: 17987112
  97. Cooper L, Meier A, Laporte MA, et al. The Planteome database: An integrated resource for reference ontologies, plant genomics and phenomics. Nucleic Acids Res 2018; 46(D1): D1168-80. doi: 10.1093/nar/gkx1152 PMID: 29186578
  98. Cooper L, Walls RL, Elser J, et al. The plant ontology as a tool for comparative plant anatomy and genomic analyses. Plant Cell Physiol 2013; 54(2): e1. doi: 10.1093/pcp/pcs163
  99. Cooper L, Jaiswal P. The plant ontology: A tool for plant genomics. Methods Mol Biol 2016; 1374: 89-114. doi: 10.1007/978-1-4939-3167-5_5 PMID: 26519402
  100. Heazlewood JL, Durek P, Hummel J, et al. PhosPhAt: A database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res 2007; 36(Database): D1015-21. doi: 10.1093/nar/gkm812 PMID: 17984086
  101. Zulawski M, Braginets R, Schulze WX. PhosPhAt goes kinases—searchable protein kinase target information in the plant phosphorylation site database PhosPhAt. Nucleic Acids Res 2012; 41(D1): D1176-84. doi: 10.1093/nar/gks1081 PMID: 23172287
  102. Durek P, Schmidt R, Heazlewood JL, et al. PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids Res 2010; 38(Database issue): D828-34. doi: 10.1093/nar/gkp810 PMID: 19880383
  103. Bolívar JC, Machens F, Brill Y, Romanov A, Bülow L, Hehl R. ‘in silico expression analysis’, a novel PathoPlant web tool to identify abiotic and biotic stress conditions associated with specific cis-regulatory sequences. Database 2014; 2014(0): bau030. doi: 10.1093/database/bau030 PMID: 24727366
  104. Bülow L, Schindler M, Hehl R. PathoPlant(R): A platform for microarray expression data to analyze co-regulated genes involved in plant defense responses. Nucleic Acids Res 2007; 35(Database): D841-5. doi: 10.1093/nar/gkl835 PMID: 17099232
  105. Zybailov B, Sun Q, van Wijk KJ. Workflow for large scale detection and validation of peptide modifications by RPLC-LTQ-Orbitrap: Application to the Arabidopsis thaliana leaf proteome and an online modified peptide library. Anal Chem 2009; 81(19): 8015-24. doi: 10.1021/ac9011792 PMID: 19725545
  106. Sun Q, Zybailov B, Majeran W, Friso G, Olinares PDB, van Wijk KJ. PPDB, the plant proteomics database at cornell. Nucleic Acids Res 2009; 37(Database issue): D969-74. doi: 10.1093/nar/gkn654 PMID: 18832363
  107. Subba P, Narayana KC, Prasad TSK. Plant proteome databases and bioinformatic tools: An expert review and comparative insights. OMICS 2019; 23(4): 190-206. doi: 10.1089/omi.2019.0024
  108. Buble K, Jung S, Humann JL, et al. Tripal MapViewer: A tool for interactive visualization and comparison of genetic maps. Database 2019; 2019: baz100. doi: 10.1093/database/baz100 PMID: 31688940
  109. Shahmuradov IA, Gammerman AJ, Hancock JM, Bramley PM, Solovyev VV. PlantProm: A database of plant promoter sequences. Nucleic Acids Res 2003; 31(1): 114-7. doi: 10.1093/nar/gkg041 PMID: 12519961

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers