A Review of Drug-related Associations Prediction Based on Artificial Intelligence Methods


Cite item

Full Text

Abstract

Background:Predicting drug-related associations is an important task in drug development and discovery. With the rapid advancement of high-throughput technologies and various biological and medical data, artificial intelligence (AI), especially progress in machine learning (ML) and deep learning (DL), has paved a new way for the development of drug-related associations prediction. Many studies have been conducted in the literature to predict drug-related associations. This study looks at various computational methods used for drug-related associations prediction with the hope of getting a better insight into the computational methods used.

Methods:The various computational methods involved in drug-related associations prediction have been reviewed in this work. We have first summarized the drug, target, and disease-related mainstream public datasets. Then, we have discussed existing drug similarity, target similarity, and integrated similarity measurement approaches and grouped them according to their suitability. We have then comprehensively investigated drug-related associations and introduced relevant computational methods. Finally, we have briefly discussed the challenges involved in predicting drug-related associations.

Result:We discovered that quite a few studies have used implemented ML and DL approaches for drug-related associations prediction. The key challenges were well noted in constructing datasets with reasonable negative samples, extracting rich features, and developing powerful prediction models or ensemble strategies.

Conclusion:This review presents useful knowledge and future challenges on the subject matter with the hope of promoting further studies on predicting drug-related associations.

About the authors

Mei Ma

School of Computer Science, Shaanxi Normal University

Email: info@benthamscience.net

Xiujuan Lei

School of Computer Science, Shaanxi Normal University

Author for correspondence.
Email: info@benthamscience.net

Yuchen Zhang

School of Computer Science, Shaanxi Normal University

Email: info@benthamscience.net

References

  1. Wang Y, Imran A, Shami A, Chaudhary AA, Khan S. Decipher the helicobacter pylori protein targeting in the nucleus of host cell and their implications in gallbladder cancer: An in silico approach. J Cancer 2021; 12(23): 7214-22. doi: 10.7150/jca.63517 PMID: 34729122
  2. Wang H, Khan S, Liu S, et al. Predicting drug-mirna resistance with layer attention graph convolution network and multi channel feature extraction. 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 2021;. Houston, TX, USA. 2021. doi: 10.1109/BIBM52615.2021.9669497
  3. Li J, Zakariah M, Malik A, et al. Analysis of salmonella typhimurium protein-targeting in the nucleus of host cells and the implications in colon cancer: An in-silico approach. Infect Drug Resist 2020; 13: 2433-42. doi: 10.2147/IDR.S258037 PMID: 32765017
  4. Lotfi Shahreza M, Ghadiri N, Mousavi SR, Varshosaz J, Green JR. A review of network-based approaches to drug repositioning. Brief Bioinform 2018; 19(5): 878-92. doi: 10.1093/bib/bbx017 PMID: 28334136
  5. Patel L, Shukla T, Huang X, Ussery DW, Wang S. Machine learning methods in drug discovery. Molecules 2020; 25(22): 5277. doi: 10.3390/molecules25225277 PMID: 33198233
  6. Hudson IL. Data integration using advances in machine learning in drug discovery and molecular biology. Methods Mol Biol 2021; 2190: 167-84. doi: 10.1007/978-1-0716-0826-5_7 PMID: 32804365
  7. Vatansever S, Schlessinger A, Wacker D, et al. Artificial intelligence and machine learning‐aided drug discovery in central nervous system diseases: State‐of‐the‐arts and future directions. Med Res Rev 2021; 41(3): 1427-73. doi: 10.1002/med.21764 PMID: 33295676
  8. Hong E, Jeon J, Kim HU. Recent development of machine learning models for the prediction of drug-drug interactions. Korean J Chem Eng 2023; 40(2): 276-85. doi: 10.1007/s11814-023-1377-3 PMID: 36748027
  9. Dai Y, Guo C, Guo W, Eickhoff C. Drug–drug interaction prediction with Wasserstein Adversarial Autoencoder-based knowledge graph embeddings. Brief Bioinform 2021; 22(4): bbaa256. doi: 10.1093/bib/bbaa256 PMID: 33126246
  10. Yu Y, Huang K, Zhang C, Glass LM, Sun J, Xiao C. SumGNN: Multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics 2021; 37(18): 2988-95. doi: 10.1093/bioinformatics/btab207 PMID: 33769494
  11. Cakir A, Tuncer M, Taymaz-Nikerel H, Ulucan O. Side effect prediction based on drug-induced gene expression profiles and random forest with iterative feature selection. Pharmacogenomics J 2021; 21(6): 673-81. doi: 10.1038/s41397-021-00246-4 PMID: 34155353
  12. Xue R, Liao J, Shao X, et al. Prediction of adverse drug reactions by combining biomedical tripartite network and graph representation model. Chem Res Toxicol 2020; 33(1): 202-10. doi: 10.1021/acs.chemrestox.9b00238 PMID: 31777246
  13. Zhu J, Liu Y, Zhang Y, Li D. Attribute supervised probabilistic dependent matrix tri-factorization model for the prediction of adverse drug-drug interaction. IEEE J Biomed Health Inform 2021; 25(7): 2820-32. doi: 10.1109/JBHI.2020.3048059 PMID: 33373310
  14. Lee CY, Chen YPP. Prediction of drug adverse events using deep learning in pharmaceutical discovery. Brief Bioinform 2021; 22(2): 1884-901. doi: 10.1093/bib/bbaa040 PMID: 32349125
  15. Nyamabo AK, Yu H, Shi JY. SSI–DDI: Substructure–substructure interactions for drug–drug interaction prediction. Brief Bioinform 2021; 22(6): bbab133. doi: 10.1093/bib/bbab133 PMID: 33951725
  16. Yu H, Zhao S, Shi J. STNN-DDI: A substructure-aware tensor neural network to predict drug-drug interactions. Brief Bioinform 2022; 23(4): bbac209. doi: 10.1093/bib/bbac209 PMID: 35667078
  17. Nyamabo AK, Yu H, Liu Z, Shi JY. Drug–drug interaction prediction with learnable size-adaptive molecular substructures. Brief Bioinform 2022; 23(1): bbab441. doi: 10.1093/bib/bbab441 PMID: 34695842
  18. Ma M, Lei X. A dual graph neural network for drug–drug interactions prediction based on molecular structure and interactions. PLOS Comput Biol 2023; 19(1): e1010812. doi: 10.1371/journal.pcbi.1010812 PMID: 36701288
  19. Zheng Y, Wu Z. Cascade deep forest with heterogeneous similarity measures for drug-target interaction prediction. Front Genet 2021; 12: 702259. doi: 10.3389/fgene.2021.702259 PMID: 34504515
  20. Xuan P, Hu K, Cui H, Zhang T, Nakaguchi T. Learning multi-scale heterogeneous representations and global topology for drug-target interaction prediction. IEEE J Biomed Health Inform 2022; 26(4): 1891-902. doi: 10.1109/JBHI.2021.3121798 PMID: 34673498
  21. Xuan P, Fan M, Cui H, Zhang T, Nakaguchi T. GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug–protein interaction prediction. Brief Bioinform 2022; 23(1): bbab453. doi: 10.1093/bib/bbab453 PMID: 34718408
  22. Cheng Z, Zhao Q, Li Y, Wang J. IIFDTI: predicting drug–target interactions through interactive and independent features based on attention mechanism. Bioinformatics 2022; 38(17): 4153-61. doi: 10.1093/bioinformatics/btac485 PMID: 35801934
  23. Zhou M, Zheng C, Xu R. Combining phenome-driven drug-target interaction prediction with patients’ electronic health records-based clinical corroboration toward drug discovery. Bioinformatics 2020; 36(S1): i436-44. doi: 10.1093/bioinformatics/btaa451 PMID: 32657406
  24. Li F, Zhang Z, Guan J, Zhou S. Effective drug–target interaction prediction with mutual interaction neural network. Bioinformatics 2022; 38(14): 3582-9. doi: 10.1093/bioinformatics/btac377 PMID: 35652721
  25. Zhao Q, Duan G, Zhao H. Gifdti: Prediction of drug-target interactions based on global molecular and intermolecular interaction representation learning. IEEE/ACM Trans Comput Biol Bioinform 2022; 20(3): 1943-52.
  26. Lee J, Yoon W, Kim S, et al. BioBERT: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 2020; 36(4): 1234-40. doi: 10.1093/bioinformatics/btz682 PMID: 31501885
  27. Gu Y, Tinn R, Cheng H, et al. Domain-specific language model pretraining for biomedical natural language processing. ACM Tran Comput Healthc 2022; 3(1): 1-23. doi: 10.1145/3458754
  28. Luo R, Sun L, Xia Y, et al. BioGPT: Generative pre-trained transformer for biomedical text generation and mining. Brief Bioinform 2022; 23(6): bbac409. doi: 10.1093/bib/bbac409 PMID: 36156661
  29. Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res 2018; 46(D1): D1074-82. doi: 10.1093/nar/gkx1037 PMID: 29126136
  30. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG. ZINC: A free tool to discover chemistry for biology. J Chem Inf Model 2012; 52(7): 1757-68. doi: 10.1021/ci3001277 PMID: 22587354
  31. Gaulton A, Bellis LJ, Bento AP, et al. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Res 2012; 40(D1): D1100-7. doi: 10.1093/nar/gkr777 PMID: 21948594
  32. Kim S, Thiessen PA, Bolton EE, et al. PubChem substance and compound databases. Nucleic Acids Res 2016; 44(D1): D1202-13. doi: 10.1093/nar/gkv951 PMID: 26400175
  33. Zhou Y, Zhang Y, Lian X, et al. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res 2022; 50(D1): D1398-407. doi: 10.1093/nar/gkab953 PMID: 34718717
  34. Hecker N, Ahmed J, von Eichborn J, et al. SuperTarget goes quantitative: Update on drug-target interactions. Nucleic Acids Res 2012; 40(D1): D1113-7. doi: 10.1093/nar/gkr912 PMID: 22067455
  35. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44(D1): D457-62. doi: 10.1093/nar/gkv1070 PMID: 26476454
  36. Hewett M, Oliver DE, Rubin DL, et al. PharmGKB: The pharmacogenetics knowledge base. Nucleic Acids Res 2002; 30(1): 163-5. doi: 10.1093/nar/30.1.163 PMID: 11752281
  37. Davis AP, Grondin CJ, Johnson RJ, et al. Comparative toxicogenomics database (CTD): Update 2021. Nucleic Acids Res 2021; 49(D1): D1138-43. doi: 10.1093/nar/gkaa891 PMID: 33068428
  38. Deng Z, Tu W, Deng Z, Hu QN. PhID: An open-access integrated pharmacology interactions database for drugs, targets, diseases, genes, side-effects, and pathways. J Chem Inf Model 2017; 57(10): 2395-400. doi: 10.1021/acs.jcim.7b00175 PMID: 28906116
  39. Kuhn M, Szklarczyk D, Pletscher-Frankild S, et al. STITCH 4: Integration of protein–chemical interactions with user data. Nucleic Acids Res 2014; 42(D1): D401-7. doi: 10.1093/nar/gkt1207 PMID: 24293645
  40. Xiong G, Yang Z, Yi J, et al. DDInter: An online drug–drug interaction database towards improving clinical decision-making and patient safety. Nucleic Acids Res 2022; 50(D1): D1200-7. doi: 10.1093/nar/gkab880 PMID: 34634800
  41. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK. BindingDB: A web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 2007; 35(Database): D198-201. doi: 10.1093/nar/gkl999 PMID: 17145705
  42. Kuhn M, Campillos M, Letunic I, Jensen LJ, Bork P. A side effect resource to capture phenotypic effects of drugs. Mol Syst Biol 2010; 6(1): 343. doi: 10.1038/msb.2009.98 PMID: 20087340
  43. Lamb J, Crawford ED, Peck D, et al. The Connectivity Map: Using gene-expression signatures to connect small molecules, genes, and disease. Science 2006; 313(5795): 1929-35. doi: 10.1126/science.1132939 PMID: 17008526
  44. Sun YZ, Zhang DH, Cai SB, Ming Z, Li JQ, Chen X. MDAD: A special resource for microbe-drug associations. Front Cell Infect Microbiol 2018; 8: 424. doi: 10.3389/fcimb.2018.00424 PMID: 30581775
  45. Rajput A, Thakur A, Sharma S, Kumar M. aBiofilm: A resource of anti-biofilm agents and their potential implications in targeting antibiotic drug resistance. Nucleic Acids Res 2018; 46(D1): D894-900. doi: 10.1093/nar/gkx1157 PMID: 29156005
  46. Andersen PI, Ianevski A, Lysvand H, et al. Discovery and development of safe-in-man broad-spectrum antiviral agents. Int J Infect Dis 2020; 93: 268-76. doi: 10.1016/j.ijid.2020.02.018
  47. Peri S, Navarro JD, Amanchy R, et al. Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res 2003; 13(10): 2363-71. doi: 10.1101/gr.1680803 PMID: 14525934
  48. Coudert E, Gehant S, de Castro E, et al. Annotation of biologically relevant ligands in UniProtKB using ChEBI. Bioinformatics 2023; 39(1): btac793. doi: 10.1093/bioinformatics/btac793 PMID: 36484697
  49. Gutmanas A, Alhroub Y, Battle GM, et al. PDBe: Protein data bank in europe. Nucleic Acids Res 2014; 42(D1): D285-91. doi: 10.1093/nar/gkt1180 PMID: 24288376
  50. Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 2015; 43(D1): D447-52. doi: 10.1093/nar/gku1003 PMID: 25352553
  51. Ashburner M, Ball CA, Blake JA, et al. Gene Ontology: Tool for the unification of biology. Nat Genet 2000; 25(1): 25-9. doi: 10.1038/75556 PMID: 10802651
  52. Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, et al. The Dis-GeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res 2020; 48(D1): D845-55. PMID: 31680165
  53. Babbi G, Martelli PL, Profiti G, Bovo S, Savojardo C, Casadio R. eDGAR: A database of disease-gene associations with annotated relationships among genes. BMC Genomics 2017; 18(S5): 554. doi: 10.1186/s12864-017-3911-3 PMID: 28812536
  54. The Lancet. ICD-11. Lancet 2019; 393(10188): 2275. doi: 10.1016/S0140-6736(19)31205-X PMID: 31180012
  55. Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res 2015; 43(D1): D789-98. doi: 10.1093/nar/gku1205 PMID: 25428349
  56. Safran M, Dalah I, Alexander J, et al. Genecards version 3: The human gene integrator. Database 2010; 2010: baq020.
  57. Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 1988; 28(1): 31-6. doi: 10.1021/ci00057a005
  58. Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen E. The chemistry development kit (CDK): An open-source java library for chemo- and bioinformatics. J Chem Inf Comput Sci 2003; 43(2): 493-500. doi: 10.1021/ci025584y PMID: 12653513
  59. Hattori M, Tanaka N, Kanehisa M, Goto S. SIMCOMP/SUBCOMP: Chemical structure search servers for network analyses. Nucleic Acids Res 2010; 38(Web Server): W652-6. doi: 10.1093/nar/gkq367 PMID: 20460463
  60. Perlman L, Gottlieb A, Atias N, et al. Combining drug and gene similarity measures for drug-target elucidation. J Comput Biol 2011; 18(2): 133-45. doi: 10.1089/cmb.2010.0213
  61. Skrbo A, Begović B, Skrbo S. Classification of drugs using the ATC system (Anatomic, Therapeutic, Chemical Classification) and the latest changes. Med Arh 2004; 58(1 (S2)): 138-41. PMID: 15137231
  62. Zeng X, Zhu S, Lu W, et al. Target identification among known drugs by deep learning from heterogeneous networks. Chem Sci 2020; 11(7): 1775-97. doi: 10.1039/C9SC04336E PMID: 34123272
  63. Subeesh V, Maheswari E, Singh H, Beulah TE, Swaroop AM. Novel adverse events of iloperidone: A disproportionality analysis in us food and drug administration adverse event reporting system (FAERS) database. Curr Drug Saf 2019; 14(1): 21-6. doi: 10.2174/1574886313666181026100000 PMID: 30362421
  64. Takarabe M, Kotera M, Nishimura Y, Goto S, Yamanishi Y. Drug target prediction using adverse event report systems: A pharmacogenomic approach. Bioinformatics 2012; 28(18): i611-8. doi: 10.1093/bioinformatics/bts413 PMID: 22962489
  65. Zhang X, Li L, Ng MK, Zhang S. Drug–target interaction prediction by integrating multiview network data. Comput Biol Chem 2017; 69: 185-93. doi: 10.1016/j.compbiolchem.2017.03.011 PMID: 28648470
  66. Holmes AB, Hawson A, Liu F, Friedman C, Khiabanian H, Rabadan R. Discovering disease associations by integrating electronic clinical data and medical literature. PLoS One 2011; 6(6): e21132. doi: 10.1371/journal.pone.0021132 PMID: 21731656
  67. Wu PY, Cheng CW, Kaddi CD, Venugopalan J, Hoffman R, Wang MD. Omic and electronic health record big data analytics for precision medicine. IEEE Trans Biomed Eng 2017; 64(2): 263-73. doi: 10.1109/TBME.2016.2573285 PMID: 27740470
  68. Guo J, Yuan C, Shang N, et al. Similarity-based health risk prediction using Domain Fusion and electronic health records data. J Biomed Inform 2021; 116: 103711. doi: 10.1016/j.jbi.2021.103711 PMID: 33610881
  69. Zhang P, Wang F, Hu J, et al. Towards personalized medicine: Leveraging patient similarity and drug similarity analytics. AMIA Jt Summits Transl Sci Proc 2014; 2014: 132-6.
  70. Zeng X, Jia Z, He Z, et al. Measure clinical drug–drug similarity using Electronic Medical Records. Int J Med Inform 2019; 124: 97-103. doi: 10.1016/j.ijmedinf.2019.02.003 PMID: 30784433
  71. Zhang W, Chen Y, Liu F, Luo F, Tian G, Li X. Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data. BMC Bioinformatics 2017; 18(1): 18. doi: 10.1186/s12859-016-1415-9 PMID: 28056782
  72. Rohani N, Eslahchi C. Drug-drug interaction predicting by neural network using integrated similarity. Sci Rep 2019; 9(1): 13645. doi: 10.1038/s41598-019-50121-3 PMID: 31541145
  73. Liu H, Song Y, Guan J, Luo L, Zhuang Z. Inferring new indications for approved drugs via random walk on drug-disease heterogenous networks. BMC Bioinformatics 2016; 17(S17): 539. doi: 10.1186/s12859-016-1336-7 PMID: 28155639
  74. Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol 1981; 147(1): 195-7. doi: 10.1016/0022-2836(81)90087-5 PMID: 7265238
  75. Yu G, Li F, Qin Y, Bo X, Wu Y, Wang S. GOSemSim: An R package for measuring semantic similarity among GO terms and gene products. Bioinformatics 2010; 26(7): 976-8. doi: 10.1093/bioinformatics/btq064 PMID: 20179076
  76. Bleakley K, Yamanishi Y. Supervised prediction of drug–target interactions using bipartite local models. Bioinformatics 2009; 25(18): 2397-403. doi: 10.1093/bioinformatics/btp433 PMID: 19605421
  77. Kim E, Choi A, Nam H. Drug repositioning of herbal compounds via a machine-learning approach. BMC Bioinformatics 2019; 20(S10): 247. doi: 10.1186/s12859-019-2811-8 PMID: 31138103
  78. Griffith M, Griffith OL, Coffman AC, et al. DGIdb: Mining the druggable genome. Nat Methods 2013; 10(12): 1209-10. doi: 10.1038/nmeth.2689 PMID: 24122041
  79. Resnik P. Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language. J Artif Intell Res 1999; 11(1): 95-130. doi: 10.1613/jair.514
  80. Pant N, Madhumita M, Paul S, Cor GO. An integrated method for clustering functionally similar genes. Interdiscip Sci 2021; 13(4): 624-37. doi: 10.1007/s12539-021-00424-9 PMID: 33761117
  81. Wang JZ, Du Z, Payattakool R, Yu PS, Chen CF. A new method to measure the semantic similarity of GO terms. Bioinformatics 2007; 23(10): 1274-81. doi: 10.1093/bioinformatics/btm087 PMID: 17344234
  82. Asur S, Ucar D, Parthasarathy S. An ensemble framework for clustering protein–protein interaction networks. Bioinformatics 2007; 23(13): i29-40. doi: 10.1093/bioinformatics/btm212 PMID: 17646309
  83. Nascimento ACA, Prudêncio RBC, Costa IG. A multiple kernel learning algorithm for drug-target interaction prediction. BMC Bioinformatics 2016; 17(1): 46. doi: 10.1186/s12859-016-0890-3 PMID: 26801218
  84. McDonald AG, Boyce S, Tipton KF. ExplorEnz: The primary source of the IUBMB enzyme list. Nucleic Acids Res 2009; 37(Database): D593-7. doi: 10.1093/nar/gkn582 PMID: 18776214
  85. Jacob L, Vert JP. Protein-ligand interaction prediction: An improved chemogenomics approach. Bioinformatics 2008; 24(19): 2149-56. doi: 10.1093/bioinformatics/btn409 PMID: 18676415
  86. Kim S, Jin D, Lee H. Predicting drug-target interactions using drug-drug interactions. PLoS One 2013; 8(11): e80129. doi: 10.1371/journal.pone.0080129 PMID: 24278248
  87. Yan C, Wang J, Lan W, Wu F-X, Pan Y. SDTRLS: Predicting drug-target interactions for complex diseases based on chemical substructures. Complexity 2017; 2017: 1-10. doi: 10.1155/2017/2713280
  88. Zheng Y, Wu Z. A machine learning-based biological drug-target interaction prediction method for a tripartite heterogeneous network. ACS Omega 2021; 6(4): 3037-45. doi: 10.1021/acsomega.0c05377 PMID: 33553921
  89. Olayan RS, Ashoor H, Bajic VB. DDR: efficient computational method to predict drug–target interactions using graph mining and machine learning approaches. Bioinformatics 2018; 34(7): 1164-73. doi: 10.1093/bioinformatics/btx731 PMID: 29186331
  90. Monteiro NRC, Ribeiro B, Arrais JP. Drug-target interaction prediction: End-to-end deep learning approach. IEEE/ACM Trans Comput Biol Bioinformatics 2021; 18(6): 2364-74. doi: 10.1109/TCBB.2020.2977335 PMID: 32142454
  91. Yan C, Duan G, Zhang Y, Wu FX, Pan Y, Wang J. Predicting drug-drug interactions based on integrated similarity and semi-supervised learning. IEEE/ACM Trans Comput Biol Bioinformatics 2022; 19(1): 168-79. doi: 10.1109/TCBB.2020.2988018 PMID: 32310779
  92. Yan XY, Zhang SW, Zhang SY. Prediction of drug–target interaction by label propagation with mutual interaction information derived from heterogeneous network. Mol Biosyst 2016; 12(2): 520-31. doi: 10.1039/C5MB00615E PMID: 26675534
  93. Cheng F, Li W, Wu Z, et al. Prediction of polypharmacological profiles of drugs by the integration of chemical, side effect, and therapeutic space. J Chem Inf Model 2013; 53(4): 753-62. doi: 10.1021/ci400010x PMID: 23527559
  94. Yan XY, Zhang SW, He CR. Prediction of drug-target interaction by integrating diverse heterogeneous information source with multiple kernel learning and clustering methods. Comput Biol Chem 2019; 78: 460-7. doi: 10.1016/j.compbiolchem.2018.11.028 PMID: 30528728
  95. Hao M, Wang Y, Bryant SH. Improved prediction of drug-target interactions using regularized least squares integrating with kernel fusion technique. Anal Chim Acta 2016; 909: 41-50. doi: 10.1016/j.aca.2016.01.014 PMID: 26851083
  96. Wang B, Mezlini AM, Demir F, et al. Similarity network fusion for aggregating data types on a genomic scale. Nat Methods 2014; 11(3): 333-7. doi: 10.1038/nmeth.2810 PMID: 24464287
  97. Rohani N, Eslahchi C, Katanforoush A. ISCMF: Integrated similarity-constrained matrix factorization for drug–drug interaction prediction. Netw Model Anal Health Inform Bioinform 2020; 9(1): 11. doi: 10.1007/s13721-019-0215-3
  98. Lin X, Xu M, Yu H. Prediction of drug-target interactions with cnns and random forest. International Conference on Intelligent Computing. Bari, Italy. 2020; pp. 361-70. doi: 10.1007/978-3-030-60802-6_32
  99. Jiang M, Li Z, Zhang S, et al. Drug–target affinity prediction using graph neural network and contact maps. RSC Advances 2020; 10(35): 20701-12. doi: 10.1039/D0RA02297G PMID: 35517730
  100. Jin X, Liu M, Wang L, et al. Multi-resolutional collaborative heterogeneous graph convolutional auto-encoder for drug-target interaction prediction IEEE International Conference on Bioinformatics and Biomedicine. Seoul, Korea. 2020; pp. 150-3. doi: 10.1109/BIBM49941.2020.9313489
  101. Cai L, Lu C, Xu J, et al. Drug repositioning based on the heterogeneous information fusion graph convolutional network. Brief Bioinform 2021; 22(6): bbab319. doi: 10.1093/bib/bbab319 PMID: 34378011
  102. Pliakos K, Vens C. Drug-target interaction prediction with tree-ensemble learning and output space reconstruction. BMC Bioinformatics 2020; 21(1): 49. doi: 10.1186/s12859-020-3379-z PMID: 32033537
  103. Sachdev K, Gupta MK. A comprehensive review of feature based methods for drug target interaction prediction. J Biomed Inform 2019; 93: 103159. doi: 10.1016/j.jbi.2019.103159 PMID: 30926470
  104. Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M. Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 2008; 24(13): i232-40. doi: 10.1093/bioinformatics/btn162 PMID: 18586719
  105. Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021; 596(7873): 583-9. doi: 10.1038/s41586-021-03819-2 PMID: 34265844
  106. Baek M, DiMaio F, Anishchenko I, et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021; 373(6557): 871-6. doi: 10.1126/science.abj8754 PMID: 34282049
  107. Dodaro A, Pavan M, Moro S. Targeting the i7l protease: A rational design for anti-monkeypox drugs? Int J Mol Sci 2023; 24(8): 7119. doi: 10.3390/ijms24087119 PMID: 37108279
  108. Wong F, Krishnan A, Zheng EJ, et al. Benchmarking AlphaFold‐enabled molecular docking predictions for antibiotic discovery. Mol Syst Biol 2022; 18(9): e11081. doi: 10.15252/msb.202211081 PMID: 36065847
  109. Heo L, Feig M. Multi‐state modeling of G‐protein coupled receptors at experimental accuracy. Proteins 2022; 90(11): 1873-85. doi: 10.1002/prot.26382 PMID: 35510704
  110. Guedes IA, Barreto AMS, Marinho D, et al. New machine learning and physics-based scoring functions for drug discovery. Sci Rep 2021; 11(1): 3198. doi: 10.1038/s41598-021-82410-1 PMID: 33542326
  111. Ross GA, Morris GM, Biggin PC. One size does not fit all: The limits of structure-based models in drug discovery. J Chem Theory Comput 2013; 9(9): 4266-74. doi: 10.1021/ct4004228 PMID: 24124403
  112. Veríssimo GC, Serafim MSM, Kronenberger T, Ferreira RS, Honorio KM, Maltarollo VG. Designing drugs when there is low data availability: One-shot learning and other approaches to face the issues of a long-term concern. Expert Opin Drug Discov 2022; 17(9): 929-47. doi: 10.1080/17460441.2022.2114451 PMID: 35983695
  113. van Laarhoven T, Marchiori E. Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile. PLoS One 2013; 8(6): e66952. doi: 10.1371/journal.pone.0066952 PMID: 23840562
  114. van Laarhoven T, Nabuurs SB, Marchiori E. Gaussian interaction profile kernels for predicting drug–target interaction. Bioinformatics 2011; 27(21): 3036-43. doi: 10.1093/bioinformatics/btr500 PMID: 21893517
  115. Cao DS, Zhang LX, Tan GS, et al. Computational prediction of drug-target interactions using chemical, biological, and network features. Mol Inform 2014; 33(10): 669-81. doi: 10.1002/minf.201400009 PMID: 27485302
  116. Zong N, Kim H, Ngo V, Harismendy O. Deep mining heterogeneous networks of biomedical linked data to predict novel drug–target associations. Bioinformatics 2017; 33(15): 2337-44. doi: 10.1093/bioinformatics/btx160 PMID: 28430977
  117. Perozzi B, Al-Rfou R, Skiena S. Deepwalk: Online learning of social representations. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. New York, New York, USA. 2014; pp. 701-10. doi: 10.1145/2623330.2623732
  118. Wen M, Zhang Z, Niu S, et al. Deep-learning-based drug-target interaction prediction. J Proteome Res 2017; 16(4): 1401-9. doi: 10.1021/acs.jproteome.6b00618 PMID: 28264154
  119. Öztürk H, Özgür A, Ozkirimli E. DeepDTA: deep drug–target binding affinity prediction. Bioinformatics 2018; 34(17): i821-9. doi: 10.1093/bioinformatics/bty593 PMID: 30423097
  120. Wang YB, You ZH, Yang S, Yi HC, Chen ZH, Zheng K. A deep learning-based method for drug-target interaction prediction based on long short-term memory neural network. BMC Med Inform Decis Mak 2020; 20(S2): 49. doi: 10.1186/s12911-020-1052-0 PMID: 32183788
  121. Nguyen T, Le H, Quinn TP, Nguyen T, Le TD, Venkatesh S. GraphDTA: Predicting drug–target binding affinity with graph neural networks. Bioinformatics 2021; 37(8): 1140-7. doi: 10.1093/bioinformatics/btaa921 PMID: 33119053
  122. Wan F, Hong L, Xiao A, Jiang T, Zeng J. NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug–target interactions. Bioinformatics 2019; 35(1): 104-11. doi: 10.1093/bioinformatics/bty543 PMID: 30561548
  123. Li Y, Qiao G, Wang K, Wang G. Drug–target interaction predication via multi-channel graph neural networks. Brief Bioinform 2022; 23(1): bbab346. doi: 10.1093/bib/bbab346 PMID: 34661237
  124. Wang S, Shan P, Zhao Y, Zuo L. GanDTI: A multi-task neural network for drug-target interaction prediction. Comput Biol Chem 2021; 92: 107476. doi: 10.1016/j.compbiolchem.2021.107476 PMID: 33799080
  125. Huang K, Xiao C, Glass LM, Sun J. MolTrans: Molecular interaction transformer for drug–target interaction prediction. Bioinformatics 2021; 37(6): 830-6. doi: 10.1093/bioinformatics/btaa880 PMID: 33070179
  126. Zhang P, Wei Z, Che C, Jin B. DeepMGT-DTI: Transformer network incorporating multilayer graph information for Drug–Target interaction prediction. Comput Biol Med 2022; 142: 105214. doi: 10.1016/j.compbiomed.2022.105214 PMID: 35030496
  127. Hou Y, Xia Y, Wu L, et al. Discovering drug–target interaction knowledge from biomedical literature. Bioinformatics 2022; 38(22): 5100-7. doi: 10.1093/bioinformatics/btac648 PMID: 36205562
  128. Wang M, Tang C, Chen J. Drug-target interaction prediction via dual laplacian graph regularized matrix completion. BioMed Res Int 2018; 2018: 1-12. doi: 10.1155/2018/1425608 PMID: 30627536
  129. Liu Y, Wu M, Miao C, Zhao P, Li XL. Neighborhood regularized logistic matrix factorization for drug-target interaction prediction. PLOS Comput Biol 2016; 12(2): e1004760. doi: 10.1371/journal.pcbi.1004760 PMID: 26872142
  130. Sajadi SZ, Zare Chahooki MA, Tavakol M, Gharaghani S. Matrix factorization with denoising autoencoders for prediction of drug–target interactions. Mol Divers 2023; 27: 1333-43. doi: 10.1007/s11030-022-10492-8 PMID: 35871213
  131. Cheng F, Liu C, Jiang J, et al. Prediction of drug-target interactions and drug repositioning via network-based inference. PLOS Comput Biol 2012; 8(5): e1002503. doi: 10.1371/journal.pcbi.1002503 PMID: 22589709
  132. Wang W, Yang S, Li J. Drug target predictions based on heterogeneous graph inference. Pac Symp Biocomput 2013; 53-64.
  133. Chen X, Liu MX, Yan GY. Drug–target interaction prediction by random walk on the heterogeneous network. Mol Biosyst 2012; 8(7): 1970-8. doi: 10.1039/c2mb00002d PMID: 22538619
  134. Qian S, Liang S, Yu H. Leveraging genetic interactions for adverse drug-drug interaction prediction. PLOS Comput Biol 2019; 15(5): e1007068. doi: 10.1371/journal.pcbi.1007068 PMID: 31125330
  135. Guo L, Lei X, Chen M, Pan Y. Msresg: Using gae and residual gcn to predict drug–drug interactions based on multi-source drug features. Interdiscip Sci 2023; 15(2): 171-88. doi: 10.1007/s12539-023-00550-6 PMID: 36646843
  136. Gottlieb A, Stein GY, Oron Y, Ruppin E, Sharan R. INDI: A computational framework for inferring drug interactions and their associated recommendations. Mol Syst Biol 2012; 8(1): 592. doi: 10.1038/msb.2012.26 PMID: 22806140
  137. Ferdousi R, Safdari R, Omidi Y. Computational prediction of drug-drug interactions based on drugs functional similarities. J Biomed Inform 2017; 70: 54-64. doi: 10.1016/j.jbi.2017.04.021 PMID: 28465082
  138. Ryu JY, Kim HU, Lee SY. Deep learning improves prediction of drug–drug and drug–food interactions. Proc Natl Acad Sci 2018; 115(18): E4304-11. doi: 10.1073/pnas.1803294115 PMID: 29666228
  139. Chu X, Lin Y, Wang Y, et al. Mlrda: A multi-task semi-supervised learning framework for drug-drug interaction prediction. Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao, China. 2019; pp. 4518-24. doi: 10.24963/ijcai.2019/628
  140. Zhang Y, Qiu Y, Cui Y, Liu S, Zhang W. Predicting drug-drug interactions using multi-modal deep auto-encoders based network embedding and positive-unlabeled learning. Methods 2020; 179: 37-46. doi: 10.1016/j.ymeth.2020.05.007 PMID: 32497603
  141. Zhang Y, Lu Z. Exploring semi-supervised variational autoencoders for biomedical relation extraction. Methods 2019; 166: 112-9. doi: 10.1016/j.ymeth.2019.02.021 PMID: 30822516
  142. Feng YH, Zhang SW, Shi JY. DPDDI: a deep predictor for drug-drug interactions. BMC Bioinformatics 2020; 21(1): 419. doi: 10.1186/s12859-020-03724-x PMID: 32972364
  143. Wang J, Zhang S, Li R, Chen G, Yan S, Ma L. Multi-view feature representation and fusion for drug-drug interactions prediction. BMC Bioinformatics 2023; 24(1): 93. doi: 10.1186/s12859-023-05212-4 PMID: 36918766
  144. Zitnik M, Agrawal M, Leskovec J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 2018; 34(13): i457-66. doi: 10.1093/bioinformatics/bty294 PMID: 29949996
  145. Karim MR, Cochez M, Jares JB, et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. Niagara Falls, NY, USA. 2019; pp. 113-23. doi: 10.1145/3307339.3342161
  146. Lin X, Quan Z, Wang Z-J, et al. KGNN: Knowledge graph neural network for drug-drug interaction prediction. Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. Yokohama, Yokohama, Japan. 2021; pp. 2739-45.
  147. Duan B, Peng J, Zhang Y. IMSE: interaction information attention and molecular structure based drug drug interaction extraction. BMC Bioinformatics 2022; 23(S7): 338. doi: 10.1186/s12859-022-04876-8 PMID: 35965308
  148. Zaikis D, Vlahavas I. TP-DDI: Transformer-based pipeline for the extraction of Drug-Drug Interactions. Artif Intell Med 2021; 119: 102153. doi: 10.1016/j.artmed.2021.102153 PMID: 34531012
  149. Lin S, Wang Y, Zhang L, et al. MDF-SA-DDI: Predicting drug–drug interaction events based on multi-source drug fusion, multi-source feature fusion and transformer self-attention mechanism. Brief Bioinform 2022; 23(1): bbab421. doi: 10.1093/bib/bbab421 PMID: 34671814
  150. Zhang P, Wang F, Hu J, Sorrentino R. Label propagation prediction of drug-drug interactions based on clinical side effects. Sci Rep 2015; 5(1): 12339. doi: 10.1038/srep12339 PMID: 26196247
  151. Sridhar D, Fakhraei S, Getoor L. A probabilistic approach for collective similarity-based drug–drug interaction prediction. Bioinformatics 2016; 32(20): 3175-82. doi: 10.1093/bioinformatics/btw342 PMID: 27354693
  152. Shi JY, Huang H, Li JX, et al. TMFUF: A triple matrix factorization-based unified framework for predicting comprehensive drug-drug interactions of new drugs. BMC Bioinformatics 2018; 19(S14): 411. doi: 10.1186/s12859-018-2379-8 PMID: 30453924
  153. Zhang W, Chen Y, Li D, Yue X. Manifold regularized matrix factorization for drug-drug interaction prediction. J Biomed Inform 2018; 88: 90-7. doi: 10.1016/j.jbi.2018.11.005 PMID: 30445219
  154. Zhang W, Jing K, Huang F, et al. SFLLN: A sparse feature learning ensemble method with linear neighborhood regularization for predicting drug–drug interactions. Inf Sci 2019; 497: 189-201. doi: 10.1016/j.ins.2019.05.017
  155. Jain S, Chouzenoux E, Kumar K, Majumdar A. Graph regularized probabilistic matrix factorization for drug-drug interactions prediction. IEEE J Biomed Health Inform 2023; 27(5): 2565-74. doi: 10.1109/JBHI.2023.3246225 PMID: 37027562
  156. Segura-Bedmar I, Martínez P, de Pablo-Sánchez C. Extracting drug-drug interactions from biomedical texts. BMC Bioinformatics 2010; 11(S5): 9. doi: 10.1186/1471-2105-11-S5-P9
  157. Segura-Bedmar I, Martínez P, de Pablo-Sánchez C. A linguistic rule-based approach to extract drug-drug interactions from pharmacological documents. BMC bioinformatics 2011; 12(S2): S1. doi: 10.1186/1471-2105-12-S2-S1
  158. Zhao Z, Yang Z, Luo L, Lin H, Wang J. Drug drug interaction extraction from biomedical literature using syntax convolutional neural network. Bioinformatics 2016; 32(22): 3444-53. doi: 10.1093/bioinformatics/btw486 PMID: 27466626
  159. Zhou D, Miao L, He Y. Position-aware deep multi-task learning for drug–drug interaction extraction. Artif Intell Med 2018; 87: 1-8. doi: 10.1016/j.artmed.2018.03.001 PMID: 29559249
  160. Sahu SK, Anand A. Drug-drug interaction extraction from biomedical texts using long short-term memory network. J Biomed Inform 2018; 86: 15-24. doi: 10.1016/j.jbi.2018.08.005 PMID: 30142385
  161. Zhu Y, Li L, Lu H, Zhou A, Qin X. Extracting drug-drug interactions from texts with BioBERT and multiple entity-aware attentions. J Biomed Inform 2020; 106: 103451. doi: 10.1016/j.jbi.2020.103451 PMID: 32454243
  162. Yang J, Ding Y, Long S, et al. Ddi-mug: Multi-aspect graphs for drug-drug interaction extraction. Front digit health 2023; 5: 1154133.
  163. Deng S, Sun Y, Zhao T, Hu Y, Zang T. A review of drug side effect identification methods. Curr Pharm Des 2020; 26(26): 3096-104. doi: 10.2174/1381612826666200612163819 PMID: 32532187
  164. Yamanishi Y, Pauwels E, Kotera M. Drug side-effect prediction based on the integration of chemical and biological spaces. J Chem Inf Model 2012; 52(12): 3284-92. doi: 10.1021/ci2005548 PMID: 23157436
  165. Huang LC, Wu X, Chen JY. Predicting adverse side effects of drugs. BMC Genomics 2011; 5(S5): S11. doi: 10.1186/1471-2164-12-S5-S11
  166. Zhang W, Yue X, Liu F, Chen Y, Tu S, Zhang X. A unified frame of predicting side effects of drugs by using linear neighborhood similarity. BMC Syst Biol 2017; 11(S6): 101. doi: 10.1186/s12918-017-0477-2 PMID: 29297371
  167. Pauwels E, Stoven V, Yamanishi Y. Predicting drug side-effect profiles: A chemical fragment-based approach. BMC Bioinformatics 2011; 12(1): 169. doi: 10.1186/1471-2105-12-169 PMID: 21586169
  168. Zhang W, Zou H, Luo L, Liu Q, Wu W, Xiao W. Predicting potential side effects of drugs by recommender methods and ensemble learning. Neurocomputing 2016; 173: 979-87. doi: 10.1016/j.neucom.2015.08.054
  169. Zhang W, Liu F, Luo L, Zhang J. Predicting drug side effects by multi-label learning and ensemble learning. BMC Bioinformatics 2015; 16(1): 365. doi: 10.1186/s12859-015-0774-y PMID: 26537615
  170. Guo X, Zhou W, Yu Y, Ding Y, Tang J, Guo F. A novel triple matrix factorization method for detecting drug-side effect association based on kernel target alignment. BioMed Res Int 2020; 2020: 1-11. doi: 10.1155/2020/4675395 PMID: 32596314
  171. Ding Y, Tang J, Guo F. Identification of drug-side effect association via semisupervised model and multiple kernel learning. IEEE J Biomed Health Inform 2019; 23(6): 2619-32. doi: 10.1109/JBHI.2018.2883834 PMID: 30507518
  172. Jiang H, Qiu Y, Hou W, Cheng X, Yim MY, Ching WK. Drug side-effect profiles prediction: From empirical to structural risk minimization. IEEE/ACM Trans Comput Biol Bioinformatics 2020; 17(2): 402-10. PMID: 29994681
  173. Ietswaart R, Arat S, Chen AX, et al. Machine learning guided association of adverse drug reactions with in vitro target-based pharmacology. EBioMedicine 2020; 57: 102837. doi: 10.1016/j.ebiom.2020.102837 PMID: 32565027
  174. Zhang F, Sun B, Diao X, Zhao W, Shu T. Prediction of adverse drug reactions based on knowledge graph embedding. BMC Med Inform Decis Mak 2021; 21(1): 38. doi: 10.1186/s12911-021-01402-3 PMID: 33541342
  175. Xu R, Wang Q. Automatic construction of a large-scale and accurate drug-side-effect association knowledge base from biomedical literature. J Biomed Inform 2014; 51: 191-9. doi: 10.1016/j.jbi.2014.05.013 PMID: 24928448
  176. La MK, Sedykh A, Fourches D, Muratov E, Tropsha A. Predicting adverse drug effects from literature- and database-mined assertions. Drug Saf 2018; 41(11): 1059-72. doi: 10.1007/s40264-018-0688-5 PMID: 29876834
  177. Jang G, Lee T, Hwang S, et al. PISTON: Predicting drug indications and side effects using topic modeling and natural language processing. J Biomed Inform 2018; 87: 96-107. doi: 10.1016/j.jbi.2018.09.015 PMID: 30268842
  178. Sui M, Cui L. Constructing a gene-drug-adverse reactions network and inferring potential gene-adverse reactions associations using a text mining approach. Stud Health Technol Inform 2017; 245: 531-5. PMID: 29295151
  179. Song M, Baek SH, Heo GE, Lee JH. Inferring drug-protein−side effect relationships from biomedical text. Genes 2019; 10(2): 159. doi: 10.3390/genes10020159 PMID: 30791472
  180. Galeano D, Li S, Gerstein M, Paccanaro A. Predicting the frequencies of drug side effects. Nat Commun 2020; 11(1): 4575. doi: 10.1038/s41467-020-18305-y PMID: 32917868
  181. Zhao H, Wang S, Zheng K, Zhao Q, Zhu F, Wang J. A similarity-based deep learning approach for determining the frequencies of drug side effects. Brief Bioinform 2022; 23(1): bbab449. doi: 10.1093/bib/bbab449 PMID: 34718402
  182. Xu X, Yue L, Li B, et al. DSGAT: Predicting frequencies of drug side effects by graph attention networks. Brief Bioinform 2022; 23(2): bbab586. doi: 10.1093/bib/bbab586 PMID: 35043189
  183. Zhao H, Zheng K, Li Y, Wang J. A novel graph attention model for predicting frequencies of drug–side effects from multi-view data. Brief Bioinform 2021; 22(6): bbab239. doi: 10.1093/bib/bbab239 PMID: 34213525
  184. Xuan P, Wang M, Liu Y, Wang D, Zhang T, Nakaguchi T. Integrating specific and common topologies of heterogeneous graphs and pairwise attributes for drug-related side effect prediction. Brief Bioinform 2022; 23(3): bbac126. doi: 10.1093/bib/bbac126 PMID: 35470853
  185. Yang M, Wu G, Zhao Q, Li Y, Wang J. Computational drug repositioning based on multi-similarities bilinear matrix factorization. Brief Bioinform 2021; 22(4): bbaa267. doi: 10.1093/bib/bbaa267 PMID: 33147616
  186. Xie G, Li J, Gu G, et al. BGMSDDA: A bipartite graph diffusion algorithm with multiple similarity integration for drug–disease association prediction. Mol Omics 2021; 17(6): 997-1011. doi: 10.1039/D1MO00237F PMID: 34610633
  187. Yan CK, Wang WX, Zhang G, et al. Birwdda: A novel drug repositioning method based on multisimilarity fusion. J Comput Biol 2019; 26(11): 1230-42. doi: 10.1089/cmb.2019.0063
  188. Li Z, Huang Q, Chen X, et al. Identification of drug-disease associations using information of molecular structures and clinical symptoms via deep convolutional neural network. Front Chem 2020; 7: 924. doi: 10.3389/fchem.2019.00924 PMID: 31998700
  189. Wang H, Zhao S, Zhao J, Feng Z. A model for predicting drug-disease associations based on dense convolutional attention network. Math Biosci Eng 2021; 18(6): 7419-39. doi: 10.3934/mbe.2021367 PMID: 34814256
  190. Xuan P, Cui H, Shen T, Sheng N, Zhang T. Heterodualnet: A dual convolutional neural network with heterogeneous layers for drug-disease association prediction via chou’s five-step rule. Front Pharmacol 2019; 10: 1301. doi: 10.3389/fphar.2019.01301 PMID: 31780934
  191. Xuan P, Ye Y, Zhang T, Zhao L, Sun C. Convolutional neural network and bidirectional long short-term memory-based method for predicting drug-disease associations. Cells 2019; 8(7): 705. doi: 10.3390/cells8070705 PMID: 31336774
  192. Chen P, Bao T, Yu X, Liu Z. A drug repositioning algorithm based on a deep autoencoder and adaptive fusion. BMC Bioinformatics 2021; 22(1): 532. doi: 10.1186/s12859-021-04406-y PMID: 34717542
  193. Zhao BW, Hu L, You ZH, Wang L, Su XR. HINGRL: Predicting drug–disease associations with graph representation learning on heterogeneous information networks. Brief Bioinform 2022; 23(1): bbab515. doi: 10.1093/bib/bbab515 PMID: 34891172
  194. Xuan P, Gao L, Sheng N, Zhang T, Nakaguchi T. Graph convolutional autoencoder and fully-connected autoencoder with attention mechanism based method for predicting drug-disease associations. IEEE J Biomed Health Inform 2021; 25(5): 1793-804. doi: 10.1109/JBHI.2020.3039502 PMID: 33216722
  195. Wang Y, Gao YL, Wang J, Li F, Liu JX. Msgca: Drug-disease associations prediction based on multi-similarities graph convolutional autoencoder. IEEE J Biomed Health Inform 2023; 1-9. doi: 10.1109/JBHI.2023.3272154 PMID: 37163398
  196. Zimmermann M, Patil KR, Typas A, Maier L. Towards a mechanistic understanding of reciprocal drug–microbiome interactions. Mol Syst Biol 2021; 17(3): e10116. doi: 10.15252/msb.202010116 PMID: 33734582
  197. Zhu L, Duan G, Yan C, et al. Prediction of microbe-drug associations based on KATZ measure. IEEE International Conference on Bioinformatics and Biomedicine. San Diego, CA, USA. 2019; pp. 183-7. doi: 10.1109/BIBM47256.2019.8983209
  198. Katz L. A new status index derived from sociometric analysis. Psychometrika 1953; 18(1): 39-43. doi: 10.1007/BF02289026
  199. Long Y, Wu M, Kwoh CK, Luo J, Li X. Predicting human microbe–drug associations via graph convolutional network with conditional random field. Bioinformatics 2020; 36(19): 4918-27. doi: 10.1093/bioinformatics/btaa598 PMID: 32597948
  200. Long Y, Wu M, Liu Y, Kwoh CK, Luo J, Li X. Ensembling graph attention networks for human microbe–drug association prediction. Bioinformatics 2020; 36(S2): i779-86. doi: 10.1093/bioinformatics/btaa891 PMID: 33381844
  201. Long Y, Luo J. Association mining to identify microbe drug interactions based on heterogeneous network embedding representation. IEEE J Biomed Health Inform 2021; 25(1): 266-75. doi: 10.1109/JBHI.2020.2998906 PMID: 32750918
  202. Long Y, Zhang Y, Wu M, et al. Heterogeneous graph attention networks for drug virus association prediction. Methods 2022; 198: 11-8. doi: 10.1016/j.ymeth.2021.08.003 PMID: 34419588
  203. Deng L, Huang Y, Liu X, et al. Graph2mda: A multi-modal variational graph embedding model for predicting microbe-drug associations. Bioinformatics 2021; 38(4): 1118-25. PMID: 34864873
  204. Fan L, Wang L, Zhu X. A novel microbe-drug association prediction model based on stacked autoencoder with multi-head attention mechanism. Sci Rep 2023; 13(1): 7396. doi: 10.1038/s41598-023-34438-8 PMID: 37149692
  205. Huang H, Sun Y, Lan M, et al. Gnaemda: Microbe-drug associations prediction on graph normalized convolutional network. IEEE J Biomed Health Inform 2023; 27(3): 1635-43. doi: 10.1109/JBHI.2022.3233711

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers