A Metric to Characterize Differentially Methylated Region Sets Detected from Methylation Array Data

  • Authors: Peng X.1, Cui W.2, Zhang W.3, Li Z.1, Zhu X.4, Yuan L.5, Li J.6
  • Affiliations:
    1. Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University,
    2. Hunan Key Laboratory of Bioinformatics, School of Computer Science and Engineering,, Central South University
    3. Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences,, Central South University
    4. Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology,
    5. Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University
    6. Department of Hematology, The Second Xiangya hospital,, Central South University
  • Issue: Vol 19, No 6 (2024)
  • Pages: 571-583
  • Section: Life Sciences
  • URL: https://jdigitaldiagnostics.com/1574-8936/article/view/643959
  • DOI: https://doi.org/10.2174/1574893618666230816141723
  • ID: 643959

Cite item

Full Text

Abstract

Background:Identifying differentially methylated region (DMR) is a basic but important task in epigenomics, which can help investigate the mechanisms of diseases and provide methylation biomarkers for screening diseases. A set of methods have been proposed to identify DMRs from methylation array data. However, it lacks effective metrics to characterize different DMR sets and enable a straight way for comparison.

Methods:In this study, we introduce a metric, DMRn, to characterize DMR sets detected by different methods from methylation array data. To calculate DMRn, firstly, the methylation differences of DMRs are recalculated by incorporating the correlations between probes and their represented CpGs. Then, DMRn is calculated based on the number of probes and the dense of CpGs in DMRs with methylation differences falling in each interval.

Result & Discussion:By comparing the DMRn of DMR sets predicted by seven methods on four scenario, the results demonstrate that DMRn can make an efficient guidance for selecting DMR sets, and provide new insights in cancer genomics studies by comparing the DMR sets from the related pathological states. For example, there are many regions with subtle methylation alteration in subtypes of prostate cancer are altered oppositely in the benign state, which may indicate a possible revision mechanism in benign prostate cancer.

Conclusion:Futhermore, when applied to datasets that underwent different runs of batch effect removal, the DMRn can help to visualize the bias introduced by multi-runs of batch effect removal. The tool for calculating DMRn is available in the GitHub repository(https://github.com/xqpeng/DMRArrayMetric).

About the authors

Xiaoqing Peng

Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University,

Email: info@benthamscience.net

Wanxin Cui

Hunan Key Laboratory of Bioinformatics, School of Computer Science and Engineering,, Central South University

Email: info@benthamscience.net

Wenjin Zhang

Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences,, Central South University

Email: info@benthamscience.net

Zihao Li

Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University,

Email: info@benthamscience.net

Xiaoshu Zhu

Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology,

Email: info@benthamscience.net

Ling Yuan

Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University

Email: info@benthamscience.net

Ji Li

Department of Hematology, The Second Xiangya hospital,, Central South University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Jiang R, Jones MJ, Chen E, et al. Discordance of DNA methylation variance between two accessible human tissues. Sci Rep 2015; 5(1): 8257. doi: 10.1038/srep08257
  2. Ghosh S, Yates AJ, Frühwald MC, Miecznikowski JC, Plass C, Smiraglia D. Tissue specific DNA methylation of CpG islands in normal human adult somatic tissues distinguishes neural from non-neural tissues. Epigenetics 2010; 5(6): 527-38. doi: 10.4161/epi.5.6.12228 PMID: 20505344
  3. Suelves M, Carrió E, Núñez-Álvarez Y, Peinado MA. DNA methylation dynamics in cellular commitment and differentiation. Brief Funct Genomics 2016; 15(6): elw017. doi: 10.1093/bfgp/elw017 PMID: 27416614
  4. Abbas Z, Tayara H, Zou Q, Chong KT. TS-m6A-DL: Tissue-specific identification of N6-methyladenosine sites using a universal deep learning model. Comput Struct Biotechnol J 2021; 19: 4619-25. doi: 10.1016/j.csbj.2021.08.014 PMID: 34471503
  5. Tang W, Wan S, Yang Z, Teschendorff AE, Zou Q. Tumor origin detection with tissue-specific miRNA and DNA methylation markers. Bioinformatics 2018; 34(3): 398-406. doi: 10.1093/bioinformatics/btx622 PMID: 29028927
  6. Semick SA, Bharadwaj RA, Collado-Torres L, et al. Integrated DNA methylation and gene expression profiling across multiple brain regions implicate novel genes in Alzheimer’s disease. Acta Neuropathol 2019; 137(4): 557-69. doi: 10.1007/s00401-019-01966-5 PMID: 30712078
  7. Wang SC, Oelze B, Schumacher A. Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLoS One 2008; 3(7): e2698. doi: 10.1371/journal.pone.0002698 PMID: 18628954
  8. Geybels MS, Zhao S, Wong CJ, et al. Epigenomic profiling of DNA methylation in paired prostate cancer versus adjacent benign tissue. Prostate 2015; 75(16): 1941-50. doi: 10.1002/pros.23093 PMID: 26383847
  9. Cao C, Wang J, Kwok D, et al. webTWAS: a resource for disease candidate susceptibility genes identified by transcriptome-wide association study. Nucleic Acids Res 2022; 50(D1): D1123-30. doi: 10.1093/nar/gkab957 PMID: 34669946
  10. Liu J, Du H, Guo R, Bai HX, Kuang H, Wang J. Mmgk: Multimodality multiview graph representations and knowledge embedding for mild cognitive impairment diagnosis. IEEE Trans Comput Soc Syst 2022; 1-10. doi: 10.1109/TCSS.2022.3216483
  11. Liu J, Li M, Lan W, Wu FX, Pan Y, Wang J. Classification of Alzheimer’s disease using whole brain hierarchical network. IEEE/ACM Trans Comput Biol Bioinformatics 2018; 15(2): 624-32. doi: 10.1109/TCBB.2016.2635144
  12. Yi PAN, Jin LIU, Xu TIAN, Wei LAN, Rui GUO. Hippocampal segmentation in brain MRI images using machine learning methods: A survey. Chin J Electron 2021; 30(5): 793-814. doi: 10.1049/cje.2021.06.002
  13. Peng X, Li Y, Kong X, Zhu X, Ding X. Investigating different DNA methylation patterns at the resolution of methylation haplotypes. Front Genet 2021; 12: 697279. doi: 10.3389/fgene.2021.697279 PMID: 34262601
  14. Xu Z, Xie C, Taylor JA, Niu L. ipDMR: Identification of differentially methylated regions with interval P -values. Bioinformatics 2021; 37(5): 711-3. doi: 10.1093/bioinformatics/btaa732 PMID: 32805005
  15. Peters TJ, Buckley MJ, Statham AL, et al. De novo identification of differentially methylated regions in the human genome. Epigenetics Chromatin 2015; 8(1): 6. doi: 10.1186/1756-8935-8-6 PMID: 25972926
  16. Sofer T, Schifano ED, Hoppin JA, Hou L, Baccarelli AA. A-clustering: A novel method for the detection of co-regulated methylation regions, and regions associated with exposure. Bioinformatics 2013; 29(22): 2884-91. doi: 10.1093/bioinformatics/btt498 PMID: 23990415
  17. Shen L, Zhu J, Robert Li SY, Fan X. Detect differentially methylated regions using non-homogeneous hidden Markov model for methylation array data. Bioinformatics 2017; 33(23): 3701-8. doi: 10.1093/bioinformatics/btx467 PMID: 29036320
  18. Pedersen BS, Schwartz DA, Yang IV, Kechris KJ. Comb-p: Software for combining, analyzing, grouping and correcting spatially correlated P -values. Bioinformatics 2012; 28(22): 2986-8. doi: 10.1093/bioinformatics/bts545 PMID: 22954632
  19. Butcher LM, Beck S. Probe Lasso: A novel method to rope in differentially methylated regions with 450K DNA methylation data. Methods 2015; 72: 21-8. doi: 10.1016/j.ymeth.2014.10.036 PMID: 25461817
  20. Yalcin D, Otu HH. An unbiased predictive model to detect DNA methylation propensity of CpG islands in the human genome. Curr Bioinform 2021; 16(2): 179-96. doi: 10.2174/1574893615999200724145835
  21. Aryee MJ, Jaffe AE, Corrada-Bravo H, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 2014; 30(10): 1363-9. doi: 10.1093/bioinformatics/btu049 PMID: 24478339
  22. Müller F, Scherer M, Assenov Y, et al. RnBeads 2.0: comprehensive analysis of DNA methylation data. Genome Biol 2019; 20(1): 55. doi: 10.1186/s13059-019-1664-9 PMID: 30871603
  23. Warden CD, Lee H, Tompkins JD, et al. COHCAP: An integrative genomic pipeline for single-nucleotide resolution DNA methylation analysis. Nucleic Acids Res 2013; 41(11): e117-7. doi: 10.1093/nar/gkt242 PMID: 23598999
  24. Gomez L, Odom GJ, Young JI, et al. coMethDMR: accurate identification of co-methylated and differentially methylated regions in epigenome-wide association studies with continuous phenotypes. Nucleic Acids Res 2019; 47(17): e98-8. doi: 10.1093/nar/gkz590 PMID: 31291459
  25. Wang D, Yan L, Hu Q, et al. IMA: an R package for high-throughput analysis of Illumina’s 450K Infinium methylation data. Bioinformatics 2012; 28(5): 729-30. doi: 10.1093/bioinformatics/bts013 PMID: 22253290
  26. Martorell-Marugán J, González-Rumayor V, Carmona-Sáez P. mCSEA: detecting subtle differentially methylated regions. Bioinformatics 2019; 35(18): 3257-62. doi: 10.1093/bioinformatics/btz096 PMID: 30753302
  27. Jaffe AE, Murakami P, Lee H, et al. Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies. Int J Epidemiol 2012; 41(1): 200-9. doi: 10.1093/ije/dyr238 PMID: 22422453
  28. Zhang Y, Liu H, Lv J, et al. QDMR: a quantitative method for identification of differentially methylated regions by entropy. Nucleic Acids Res 2011; 39(9): e58-8. doi: 10.1093/nar/gkr053 PMID: 21306990
  29. Kolde R, Märtens K, Lokk K, Laur S, Vilo J. seqlm: An MDL based method for identifying differentially methylated regions in high density methylation array data. Bioinformatics 2016; 32(17): 2604-10. doi: 10.1093/bioinformatics/btw304 PMID: 27187204
  30. Chen D, Zhang H, Zou Q, Ju Y, Song C. Distance-based support vector machine to predict DNA N6- methyladenine modification. Curr Bioinform 2022; 17(5): 473-82. doi: 10.2174/1574893617666220404145517
  31. Chen J, Zou Q, Li J. DeepM6ASeq-EL: prediction of human N6-methyladenosine (m6A) sites with LSTM and ensemble learning. Front Comput Sci 2022; 16(2): 162302. doi: 10.1007/s11704-020-0180-0
  32. Mallik S, Odom GJ, Gao Z, Gomez L, Chen X, Wang L. An evaluation of supervised methods for identifying differentially methylated regions in Illumina methylation arrays. Brief Bioinform 2019; 20(6): 2224-35. doi: 10.1093/bib/bby085 PMID: 30239597
  33. Li D, Xie Z, Le Pape M, Dye T. An evaluation of statistical methods for DNA methylation microarray data analysis. BMC Bioinformatics 2015; 16(1): 217. doi: 10.1186/s12859-015-0641-x PMID: 26156501
  34. Peng X, Li HD, Wu FX, Wang J. Identifying the tissues-of-origin of circulating cell-free DNAs is a promising way in noninvasive diagnostics. Brief Bioinform 2021; 22(3): bbaa060. doi: 10.1093/bib/bbaa060 PMID: 32427285
  35. Qiao G, Zhuang W, Dong B, et al. Discovery and validation of methylation signatures in circulating cell-free DNA for early detection of esophageal cancer: A case-control study. BMC Med 2021; 19(1): 243. doi: 10.1186/s12916-021-02109-y PMID: 34641873
  36. Hao X, Luo H, Krawczyk M, et al. DNA methylation markers for diagnosis and prognosis of common cancers. Proc Natl Acad Sci USA 2017; 114(28): 7414-9. doi: 10.1073/pnas.1703577114 PMID: 28652331
  37. de Almeida BP, Apolónio JD, Binnie A, Castelo-Branco P. Roadmap of DNA methylation in breast cancer identifies novel prognostic biomarkers. BMC Cancer 2019; 19(1): 219. doi: 10.1186/s12885-019-5403-0 PMID: 30866861
  38. Peng X, Luo H, Kong X, Wang J. Metrics for evaluating differentially methylated region sets predicted from BS-seq data. Brief Bioinform 2022; 23(1): bbab475. doi: 10.1093/bib/bbab475 PMID: 34874989
  39. Aref-Eshghi E, Schenkel LC, Ainsworth P, et al. Genomic DNA methylation-derived algorithm enables accurate detection of malignant prostate tissues. Front Oncol 2018; 8: 100. doi: 10.3389/fonc.2018.00100 PMID: 29740534
  40. Silva R, Moran B, Baird AM, et al. Longitudinal analysis of individual cfDNA methylome patterns in metastatic prostate cancer. Clin Epigenetics 2021; 13(1): 168. doi: 10.1186/s13148-021-01155-w PMID: 34454584
  41. Slieker RC, Bos SD, Goeman JJ, et al. Identification and systematic annotation of tissue-specific differentially methylated regions using the Illumina 450k array. Epigenetics Chromatin 2013; 6(1): 26. doi: 10.1186/1756-8935-6-26 PMID: 23919675
  42. Lokk K, Modhukur V, Rajashekar B, et al. DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns. Genome Biol 2014; 15(4): 3248. doi: 10.1186/gb-2014-15-4-r54 PMID: 24690455
  43. Pervjakova N, Kasela S, Morris AP, et al. Imprinted genes and imprinting control regions show predominant intermediate methylation in adult somatic tissues. Epigenomics 2016; 8(6): 789-99. doi: 10.2217/epi.16.8 PMID: 27004446
  44. Tian Y, Morris TJ, Webster AP, et al. ChAMP: Updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics 2017; 33(24): 3982-4. doi: 10.1093/bioinformatics/btx513 PMID: 28961746
  45. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 2012; 28(6): 882-3. doi: 10.1093/bioinformatics/bts034 PMID: 22257669
  46. Wu Y, Fletcher M, Gu Z, et al. Glioblastoma epigenome profiling identifies SOX10 as a master regulator of molecular tumour subtype. Nat Commun 2020; 11(1): 6434. doi: 10.1038/s41467-020-20225-w PMID: 33339831
  47. de Souza N. The ENCODE project. Nat Methods 2012; 9(11): 1046-6. doi: 10.1038/nmeth.2238 PMID: 23281567

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers