Metabolomics: Recent Advances and Future Prospects Unveiled


Cite item

Full Text

Abstract

In the era of genomics, fueled by advanced technologies and analytical tools, metabolomics has become a vital component in biomedical research. Its significance spans various domains, encompassing biomarker identification, uncovering underlying mechanisms and pathways, as well as the exploration of new drug targets and precision medicine. This article presents a comprehensive overview of the latest developments in metabolomics techniques, emphasizing their wide-ranging applications across diverse research fields and underscoring their immense potential for future advancements.

About the authors

Shweta Sharma

Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard university

Author for correspondence.
Email: info@benthamscience.net

Garima Singh

Department of Bioinformatics, School of Interdisciplinary Sciences, Jamia Hamdard University

Email: info@benthamscience.net

Mymoona Akhter

Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard University

Email: info@benthamscience.net

References

  1. Oliver S, Winson MK, Kell DB, Baganz F. Systematic functional analysis of the yeast genome. Trends Biotechnol 1998; 16(9): 373-8. doi: 10.1016/S0167-7799(98)01214-1 PMID: 9744112
  2. Sandlers Y. The future perspective: Metabolomics in laboratory medicine for inborn errors of metabolism. Transl Res 2017; 189: 65-75. doi: 10.1016/j.trsl.2017.06.005 PMID: 28675806
  3. Clish CB. Metabolomics: An emerging but powerful tool for precision medicine. Molecular Case Studies 2015; 1(1): a000588. doi: 10.1101/mcs.a000588 PMID: 27148576
  4. Loscalzo J, Kohane I, Barabasi AL. Human disease classification in the postgenomic era: A complex systems approach to human pathobiology. Mol Syst Biol 2007; 3(1): 124. doi: 10.1038/msb4100163 PMID: 17625512
  5. Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999; 29(11): 1181-9. doi: 10.1080/004982599238047 PMID: 10598751
  6. Shweta S, Dinesh K. Application of Multi-scale Modeling Techniques in System Biology, Systems Biology, Bioinformatics and Livestock Sci 2023; 1: 17. doi: 10.2174/9789815165616123010007
  7. Frédérich M, Pirotte B, Fillet M, de Tullio P. Metabolomics as a challenging approach for medicinal chemistry and personalized medicine. J Med Chem 2016; 59(19): 8649-66. doi: 10.1021/acs.jmedchem.5b01335 PMID: 27295417
  8. Guo L, Milburn MV, Ryals JA, et al. Plasma metabolomic profiles enhance precision medicine for volunteers of normal health. Proc Natl Acad Sci 2015; 112(35): E4901-10. doi: 10.1073/pnas.1508425112 PMID: 26283345
  9. Monteiro MS, Carvalho M, Bastos ML, Guedes de Pinho P. Metabolomics analysis for biomarker discovery: Advances and challenges. Curr Med Chem 2013; 20(2): 257-71. doi: 10.2174/092986713804806621 PMID: 23210853
  10. Yang Q, Zhang A, Miao J, et al. Metabolomics biotechnology, applications, and future trends: A systematic review. RSC Advances 2019; 9(64): 37245-57. doi: 10.1039/C9RA06697G PMID: 35542267
  11. Guasch-Ferré M, Bhupathiraju SN, Hu FB. Use of metabolomics in improving assessment of dietary intake. Clin Chem 2018; 64(1): 82-98. doi: 10.1373/clinchem.2017.272344 PMID: 29038146
  12. Chen C, Shah YM, Morimura K, et al. Metabolomics reveals that hepatic stearoyl-CoA desaturase 1 downregulation exacerbates inflammation and acute colitis. Cell Metab 2008; 7(2): 135-47. doi: 10.1016/j.cmet.2007.12.003 PMID: 18249173
  13. Locci E, Stocchero M, Noto A, et al. A 1H NMR metabolomic approach for the estimation of the time since death using aqueous humour: An animal model. Metabolomics 2019; 15(5): 76. doi: 10.1007/s11306-019-1533-2 PMID: 31069551
  14. Dobrzyn P, Bednarski T, Dobrzyn A. Metabolic reprogramming of the heart through stearoyl-CoA desaturase. Prog Lipid Res 2015; 57: 1-12. doi: 10.1016/j.plipres.2014.11.003 PMID: 25482956
  15. Yang W, Bai Y, Xiong Y, et al. Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism. Nature 2016; 531(7596): 651-5. doi: 10.1038/nature17412 PMID: 26982734
  16. Roider HG, Pavlova N, Kirov I, et al. Drug2Gene: An exhaustive resource to explore effectively the drug-target relation network. BMC Bioinformatics 2014; 15(1): 68. doi: 10.1186/1471-2105-15-68 PMID: 24618344
  17. Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res 2018; 46(D1): D1074-82. doi: 10.1093/nar/gkx1037 PMID: 29126136
  18. Freshour SL, Kiwala S, Cotto KC, et al. integration of the drug–gene interaction database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Res 2021; 49(D1): D1144-51. doi: 10.1093/nar/gkaa1084 PMID: 33237278
  19. Si̇ngh G, Janardhanan A, Sharma S, Vyas B, Ali̇ S, Akhter M. A systematic review and data analysis on the epidemiology of tuberculosis and diabetes mellitus. J Microbiol Infect Dis 2021; 11(04): 191-200. doi: 10.5799/jmid.1036742
  20. Lamb J. The connectivity map: A new tool for biomedical research. Nat Rev Cancer 2007; 7: 54-60. doi: 10.1038/nrc2044
  21. Lamichhane S, Sen P, Alex M, et al. An overview of metabolomics data analysis: Current tools and future perspectives. In: Comprehensive Analytical Chemistry. Elsevier 2018.
  22. Clayton TA, Baker D, Lindon JC, Everett JR, Nicholson JK. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci 2009; 106(34): 14728-33. doi: 10.1073/pnas.0904489106 PMID: 19667173
  23. Andrew Clayton T, Lindon JC, Cloarec O, et al. Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature 2006; 440(7087): 1073-7. doi: 10.1038/nature04648 PMID: 16625200
  24. Sharma S, Rehman Ansari MH, Sharma K, et al. Pyrazoline scaffold: Hit identification to lead synthesis and biological evaluation as antidiabetic agents. Future Med Chem 2023; 15(1): 9-24. doi: 10.4155/fmc-2022-0141 PMID: 36655571
  25. Sharma S, Sharma S, Pathak V, Kaur P, Singh RK. Drug repurposing using similarity-based target prediction, docking studies and scaffold hopping of lefamulin. Lett Drug Des Discov 2021; 18(7): 733-43. doi: 10.2174/1570180817999201201113712
  26. Sharma S, Srivastav S, Singh G, et al. In silico strategies for probing novel DPP-IV inhibitors as anti-diabetic agents. J Biomol Struct Dyn 2021; 39(6): 2118-32. doi: 10.1080/07391102.2020.1751714 PMID: 32248758
  27. Sharma S, Srivastava S, Shrivastava A, et al. Mining of potential dipeptidyl peptidase-IV inhibitors as anti-diabetic agents using integrated in silico approaches. J Biomol Struct Dyn 2020; 38(18): 5349-61. doi: 10.1080/07391102.2019.1701553 PMID: 31813365
  28. Zhang A, Sun H, Yan G, Wang P, Han Y, Wang X. Metabolomics in diagnosis and biomarker discovery of colorectal cancer. Cancer Lett 2014; 345(1): 17-20. doi: 10.1016/j.canlet.2013.11.011 PMID: 24333717
  29. Hajduk PJ, Burns DJ. Integration of NMR and high-throughput screening. Comb Chem High Throughput Screen 2002; 5(8): 613-21. doi: 10.2174/1386207023329996 PMID: 12470258
  30. Sharma S, Akhter M, Kumar Singh R. Understanding promising anticancer targets for heterocyclic leads: An introduction. In: Key Heterocyclic Cores for Smart Anticancer Drug–Design Part II. Bentham Science Publishers. 2022; 1: pp. 1-34. doi: 10.2174/9789815040043122020004
  31. Lindeman NI, Cagle PT, Aisner DL, et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors. J Mol Diagn 2018; 20(2): 129-59. doi: 10.1016/j.jmoldx.2017.11.004 PMID: 29398453
  32. Warburg O. On the origin of cancer cells. Science 1956; 123(3191): 309-14. doi: 10.1126/science.123.3191.309 PMID: 13298683
  33. Kühn T, Floegel A, Sookthai D, et al. Higher plasma levels of lysophosphatidylcholine 18:0 are related to a lower risk of common cancers in a prospective metabolomics study. BMC Med 2016; 14(1): 13. doi: 10.1186/s12916-016-0552-3 PMID: 26817443
  34. Bannur Z, Teh LK, Hennesy T, et al. The differential metabolite profiles of acute lymphoblastic leukaemic patients treated with 6-mercaptopurine using untargeted metabolomics approach. Clin Biochem 2014; 47(6): 427-31. doi: 10.1016/j.clinbiochem.2014.02.013 PMID: 24582698
  35. Slamon D, Eiermann W, Robert N, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med 2011; 365(14): 1273-83. doi: 10.1056/NEJMoa0910383 PMID: 21991949
  36. Liesenfeld DB, Habermann N, Owen RW, Scalbert A, Ulrich CM. Review of mass spectrometry-based metabolomics in cancer research. Cancer Epidemiol Biomarkers Prev 2013; 22(12): 2182-201. doi: 10.1158/1055-9965.EPI-13-0584 PMID: 24096148
  37. Fiehn O, Putri SP, Saito K, Salek RM, Creek DJ. Metabolomics continues to expand: Highlights from the 2015 metabolomics conference. Metabolomics 2015; 11(5): 1036-40. doi: 10.1007/s11306-015-0846-z
  38. Thewjitcharoen Y, Jones Elizabeth A, Butadej S, et al. Performance of HbA1c versus oral glucose tolerance test (OGTT) as a screening tool to diagnose dysglycemic status in high-risk Thai patients. BMC Endocr Disord 2019; 19(1): 23. doi: 10.1186/s12902-019-0339-6 PMID: 30770743
  39. Florkowski C. HbA1c as a diagnostic test for diabetes mellitus: Reviewing the evidence. Clin Biochem Rev 2013; 34(2): 75-83. PMID: 24151343
  40. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diab Care 2010; 33(Suppl 1)(1): S62-9. doi: 10.2337/dc10-S062 PMID: 20042775
  41. Suhre K, Meisinger C, Döring A, et al. Metabolic footprint of diabetes: A multiplatform metabolomics study in an epidemiological setting. PLoS One 2010; 5(11): e13953. doi: 10.1371/journal.pone.0013953 PMID: 21085649
  42. Kenneth R. Oral and Injectable (Non-Insulin) Pharmacological Agents for the Treatment of Type 2 Diabetes. South Dartmouth (MA): MDTextcom, Inc 2000.
  43. Koníčková D, Menšíková K, Tučková L, et al. Biomarkers of neurodegenerative diseases: Biology, taxonomy, clinical relevance, and current research status. Biomedicines 2022; 10(7): 1760. doi: 10.3390/biomedicines10071760 PMID: 35885064
  44. Gowda GAN, Zhang S, Gu H, Asiago V, Shanaiah N, Raftery D. Metabolomics-based methods for early disease diagnostics. Expert Rev Mol Diagn 2008; 8(5): 617-33. doi: 10.1586/14737159.8.5.617 PMID: 18785810
  45. Bazanella M, Maier TV, Clavel T, et al. Randomized controlled trial on the impact of early-life intervention with bifidobacteria on the healthy infant fecal microbiota and metabolome. Am J Clin Nutr 2017; 106(5): 1274-86. doi: 10.3945/ajcn.117.157529 PMID: 28877893
  46. Darst BF, Lu Q, Johnson SC, Engelman CD. Integrated analysis of genomics, longitudinal metabolomics, and Alzheimer’s risk factors among 1,111 cohort participants. Genet Epidemiol 2019; 43(6): gepi.22211.. doi: 10.1002/gepi.22211 PMID: 31104335
  47. Lucio M, Willkommen D, Schroeter M, Sigaroudi A, Schmitt-Kopplin P, Michalke B. Integrative metabolomic and metallomic analysis in a case–control cohort with parkinson’s disease. Front Aging Neurosci 2019; 11: 331. doi: 10.3389/fnagi.2019.00331 PMID: 31866853
  48. Nho K, Kueider-Paisley A, MahmoudianDehkordi S, et al. Altered bile acid profile in mild cognitive impairment and Alzheimer’s disease: Relationship to neuroimaging and CSF biomarkers. Alzheimers Dement 2019; 15(2): 232-44. doi: 10.1016/j.jalz.2018.08.012 PMID: 30337152
  49. Karlíková R, Mičová K, Najdekr L, et al. Metabolic status of CSF distinguishes rats with tauopathy from controls. Alzheimers Res Ther 2017; 9(1): 78. doi: 10.1186/s13195-017-0303-5 PMID: 28934963
  50. Neurotoxin A. In Handbook of Plant and Animal Toxins in Food. CRC Press 2022; pp. 251-74.
  51. Xu Q, Liu F, Qu R, et al. Transcriptomic profiling of Lathyrus sativus L. metabolism of β-ODAP, a neuroexcitatory amino acid associated with neurodegenerative lower limb paralysis. Plant Mol Biol Report 2018; 36(5-6): 832-43. doi: 10.1007/s11105-018-1123-x
  52. Gątarek P, Sekulska-Nalewajko J, Bobrowska-Korczaka B, et al. Plasma metabolic disturbances in parkinson’s disease patients. Biomedicines 2022; 10(12): 3005. doi: 10.3390/biomedicines10123005 PMID: 36551761
  53. Musgrove RE, Horne J, Wilson R, King AE, Edwards LM, Dickson TC. The metabolomics of alpha-synuclein (SNCA) gene deletion and mutation in mouse brain. Metabolomics 2014; 10(1): 114-22. doi: 10.1007/s11306-013-0561-6
  54. Gonzalez-Covarrubias V, Martínez-Martínez E, del Bosque-Plata L. The potential of metabolomics in biomedical applications. Metabolites 2022; 12(2): 194. doi: 10.3390/metabo12020194 PMID: 35208267
  55. Beger RD, Schmidt MA, Kaddurah-Daouk R. Current concepts in pharmacometabolomics, biomarker discovery, and precision medicine. Metabolites 2020; 10(4): 129. doi: 10.3390/metabo10040129 PMID: 32230776
  56. Crutchfield CA, Thomas SN, Sokoll LJ, Chan DW. Advances in mass spectrometry-based clinical biomarker discovery. Clin Proteomics 2016; 13: 1. doi: 10.1186/s12014-015-9102-9
  57. den Ouden H, Pellis L, Rutten GEHM, et al. Metabolomic biomarkers for personalised glucose lowering drugs treatment in type 2 diabetes. Metabolomics 2016; 12(2): 27. doi: 10.1007/s11306-015-0930-4 PMID: 26770180
  58. Palau-Rodriguez M, Tulipani S, Isabel Queipo-Ortuño M, Urpi-Sarda M, Tinahones FJ, Andres-Lacueva C. Metabolomic insights into the intricate gut microbial–host interaction in the development of obesity and type 2 diabetes. Front Microbiol 2015; 6: 1151. doi: 10.3389/fmicb.2015.01151 PMID: 26579078
  59. Auwerx C, Sadler MC, Reymond A, Kutalik Z. From pharmacogenetics to pharmaco-omics: Milestones and future directions. Human Genet Genom Adv 2022; 3(2): 100100. doi: 10.1016/j.xhgg.2022.100100 PMID: 35373152
  60. Everett JR, Loo RL, Pullen FS, Pullen FS. Pharmacometabonomics and personalized medicine. Ann Clin Biochem 2013; 50(6): 523-45. doi: 10.1177/0004563213497929 PMID: 23888060
  61. Shen S, Zhan C, Yang C, Fernie AR, Luo J. Metabolomics-centered mining of plant metabolic diversity and function: Past decade and future perspectives. Mol Plant 2023; 16(1): 43-63. doi: 10.1016/j.molp.2022.09.007 PMID: 36114669
  62. Sharma S, Semwal AD, Murugan MP, Khan MA. Grain Storage and Transportation Management. Cereal Grains 2023; 269-96.
  63. Arbona V, Manzi M, Ollas C, Gómez-Cadenas A. Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int J Mol Sci 2013; 14(3): 4885-911. doi: 10.3390/ijms14034885 PMID: 23455464
  64. Mead MN. Nutrigenomics: The genome: Food interface. Environ Health Perspect 2007; 115(12): A582-9. doi: 10.1289/ehp.115-a582 PMID: 18087577
  65. Noerman S, Landberg R. Blood metabolite profiles linking dietary patterns with health—Toward precision nutrition. J Intern Med 2023; 293(4): 408-32. doi: 10.1111/joim.13596 PMID: 36484466
  66. German JB, Zivkovic AM, Dallas DC, Smilowitz JT. Nutrigenomics and personalized diets: What will they mean for food? Annu Rev Food Sci Technol 2011; 2(1): 97-123. doi: 10.1146/annurev.food.102308.124147 PMID: 22129377
  67. Ryan EP, Heuberger AL, Broeckling CD, Borresen EC, Tillotson C, Prenni JE. Advances in nutritional metabolomics. Curr Metabolomics 2013; 1(2): 109-20. doi: 10.2174/2213235X11301020001 PMID: 29682447
  68. Cesare Marincola F, Corbu S, Lussu M, et al. Impact of early postnatal nutrition on the NMR urinary metabolic profile of infant. J Proteome Res 2016; 15(10): 3712-23. doi: 10.1021/acs.jproteome.6b00537 PMID: 27650928
  69. Brennan L. Use of metabotyping for optimal nutrition. Curr Opin Biotechnol 2017; 44: 35-8. doi: 10.1016/j.copbio.2016.10.008 PMID: 27835796
  70. Hillesheim E, Ryan MF, Gibney E, Roche HM, Brennan L. Optimisation of a metabotype approach to deliver targeted dietary advice. Nutr Metab 2020; 17(1): 82. doi: 10.1186/s12986-020-00499-z PMID: 33005208
  71. Sharma S, Semwal AD, Srihari SP, Govindraj T, Wadikar DD. Impact of physico-chemical variation in different rice cultivars and freezing pretreatment for retaining better rehydration characteristics of instant rice. Int J Trop Agric 2022; 40(1-2): 71-84. b
  72. Shim JS, Oh K, Kim HC. Dietary assessment methods in epidemiologic studies. Epidemiol Health 2014; 36: e2014009. doi: 10.4178/epih/e2014009 PMID: 25078382
  73. Steuer AE, Brockbals L, Kraemer T. Metabolomic strategies in biomarker research–new approach for indirect identification of drug consumption and sample manipulation in clinical and forensic toxicology? Front Chem 2019; 7: 319. doi: 10.3389/fchem.2019.00319 PMID: 31134189
  74. Szeremeta M, Pietrowska K, Niemcunowicz-Janica A, Kretowski A, Ciborowski M. Applications of metabolomics in forensic toxicology and forensic medicine. Int J Mol Sci 2021; 22(6): 3010. doi: 10.3390/ijms22063010 PMID: 33809459
  75. Guo B, Chen B, Liu A, Zhu W, Yao S. Liquid chromatography-mass spectrometric multiple reaction monitoring-based strategies for expanding targeted profiling towards quantitative metabolomics. Curr Drug Metab 2012; 13(9): 1226-43. doi: 10.2174/138920012803341401 PMID: 22519369
  76. Zheng T, Liu L, Aa J, et al. Metabolic phenotype of rats exposed to heroin and potential markers of heroin abuse. Drug Alcohol Depend 2013; 127(1-3): 177-86. doi: 10.1016/j.drugalcdep.2012.06.031 PMID: 22840430
  77. Kaliszan M, Hauser R, Kernbach-Wighton G. Estimation of the time of death based on the assessment of post mortem processes with emphasis on body cooling. Leg Med 2009; 11(3): 111-7. doi: 10.1016/j.legalmed.2008.12.002 PMID: 19200767
  78. Harada H, Maeiwa M, Yoshikawa K, Ohsaka A. Identification and quantitation by 1H-NMR of metabolites in animal organs and tissues. An application of NMR spectroscopy in forensic science. Forensic Sci Int 1984; 24(1): 1-7. doi: 10.1016/0379-0738(84)90145-2 PMID: 6698447
  79. Sparks DL, Slevin JT, Hunsaker JC III. 3-Methoxytyramine in the putamen as a gauge of the postmortem interval. J Forensic Sci 1986; 31(3): 11104J. doi: 10.1520/JFS11104J PMID: 3734746
  80. Ith M, Bigler P, Scheurer E, et al. Observation and identification of metabolites emerging during postmortem decomposition of brain tissue by means of in situ 1H-magnetic resonance spectroscopy. Magn Reson Med 2002; 48(5): 915-20. doi: 10.1002/mrm.10294 PMID: 12418008
  81. Banaschak S, Rzanny R, Reichenbach JR, Kaiser WA, Klein A. Estimation of postmortem metabolic changes in porcine brain tissue using 1H-MR spectroscopy?preliminary results. Int J Legal Med 2005; 119(2): 77-9. doi: 10.1007/s00414-004-0495-7 PMID: 15578198
  82. Scheurer E, Ith M, Dietrich D, et al. Statistical evaluation of time-dependent metabolite concentrations: Estimation of post-mortem intervals based onin situ1H-MRS of the brain. NMR Biomed 2005; 18(3): 163-72. doi: 10.1002/nbm.934 PMID: 15578674
  83. Madea B. The medical inquest Legal basis, practical implementation, problem solving. Berlin, Germany: Springer 2014.
  84. Madea B. Sudden death, especially in infancy: Improvement of diagnoses by biochemistry, immunohistochemistry and molecular pathology. Leg Med 2009; 11(1): S36-42. doi: 10.1016/j.legalmed.2009.01.111 PMID: 19282226
  85. Huang J, Mondul AM, Weinstein SJ, et al. Prospective serum metabolomic profiling of lethal prostate cancer. Int J Cancer 2019; 145(12): 3231-43. doi: 10.1002/ijc.32218 PMID: 30779128
  86. Newgard CB. Metabolomics and metabolic diseases: Where do we stand? Cell Metab 2017; 25(1): 43-56. doi: 10.1016/j.cmet.2016.09.018 PMID: 28094011
  87. Banoei MM, Casault C, Metwaly SM, Winston BW. Metabolomics and biomarker discovery in traumatic brain injury. J Neurotrauma 2018; 35(16): 1831-48. doi: 10.1089/neu.2017.5326 PMID: 29587568
  88. Bohnert S, Reinert C, Trella S, Schmitz W, Ondruschka B, Bohnert M. Metabolomics in postmortem cerebrospinal fluid diagnostics: A state-of-the-art method to interpret central nervous system–related pathological processes. Int J Legal Med 2021; 135(1): 183-91. doi: 10.1007/s00414-020-02462-2 PMID: 33180198
  89. Zelentsova EA, Yanshole LV, Snytnikova OA, Yanshole VV, Tsentalovich YP, Sagdeev RZ. Post-mortem changes in the metabolomic compositions of rabbit blood, aqueous and vitreous humors. Metabolomics 2016; 16(7): 80. doi: 10.1007/s11306-020-01700-3 PMID: 32613532
  90. Singh S, Kushwaha SP, Patnaik S. Forensic laboratory management and analysis system. J Basic Appl Eng Res 2016; 3(2): 154-6.
  91. Fischer K, Kettunen J, Würtz P, et al. Biomarker profiling by nuclear magnetic resonance spectroscopy for the prediction of all-cause mortality: An observational study of 17,345 persons. PLoS Med 2014; 11(2): e1001606. doi: 10.1371/journal.pmed.1001606 PMID: 24586121
  92. Deelen J, Kettunen J, Fischer K, et al. A metabolic profile of all-cause mortality risk identified in an observational study of 44,168 individuals. Nat Commun 2019; 10(1): 3346. doi: 10.1038/s41467-019-11311-9 PMID: 31431621

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers