Optimized Hybrid Deep Learning for Real-Time Pandemic Data Forecasting: Long and Short-Term Perspectives


Cite item

Full Text

Abstract

Background:With new variants of COVID-19 causing challenges, we need to focus on integrating multiple deep-learning frameworks to develop intelligent healthcare systems for early detection and diagnosis.

Objective:This article suggests three hybrid deep learning models, namely CNN-LSTM, CNN-Bi- LSTM, and CNN-GRU, to address the pressing need for an intelligent healthcare system. These models are designed to capture spatial and temporal patterns in COVID-19 data, thereby improving the accuracy and timeliness of predictions. An output forecasting framework integrates these models, and an optimization algorithm automatically selects the hyperparameters for the 13 baselines and the three proposed hybrid models.

Methods:Real-time time series data from the five most affected countries were used to test the effectiveness of the proposed models. Baseline models were compared, and optimization algorithms were employed to improve forecasting capabilities.

Results:CNN-GRU and CNN-LSTM are the top short- and long-term forecasting models. CNNGRU had the best performance with the lowest SMAPE and MAPE values for long-term forecasting in India at 3.07% and 3.17%, respectively, and impressive results for short-term forecasting with SMAPE and MAPE values of 1.46% and 1.47%.

Conclusion:Hybrid deep learning models, like CNN-GRU, can aid in early COVID-19 assessment and diagnosis. They detect patterns in data for effective governmental strategies and forecasting. This helps manage and mitigate the pandemic faster and more accurately.

About the authors

Sujata Dash

Information Technology Department, School of Engineering & Technology, Nagaland University

Email: info@benthamscience.net

Sourav Giri

Computer Application, Maharaja Srirama Chandra Bhanja Deo University

Email: info@benthamscience.net

Subhendu Pani

Computer Science & Engineering, Krupajal Computer Academy,

Email: info@benthamscience.net

Saurav Mallik

Department of Environmental Health, Harvard T.H. Chan School of Public Health,, Harvard University

Author for correspondence.
Email: info@benthamscience.net

Mingqiang Wang

Department of Biomedicine, Stanford University

Email: info@benthamscience.net

Hong Qin

Department of Computer Science & Engineering, University of Tennessee at Chattanooga

Author for correspondence.
Email: info@benthamscience.net

References

  1. World Health Organization. WHO Coronavirus (COVID-19) Dashboard. 2020. Available From: https://covid19.who.int/region/searo/country/in
  2. Ritchie H, Mathieu E, Rodés-Guirao L. Coronavirus Pandemic (COVID-19). 2020. Available From: https://ourworldindata.org/coronavirus
  3. COVID-19 Dashboard by the Centre for Systems Science and Engineering (CSSE) at Johns Hopkins University. 2023. Available From: https://coronavirus.jhu.edu/map.html
  4. Jacobsen KH. Will COVID-19 generate global preparedness? Lancet 2020; 395(10229): 1013-4. doi: 10.1016/S0140-6736(20)30559-6 PMID: 32199074
  5. Dur’an-Polanco L, Siller M. Crowd management COVID-19. Annu Rev Control 2021; 52: 465-78. doi: 10.1016/j.arcontrol.2021.04.006
  6. More than 12.7 billion shots given: COVID-19 tracker. 2022. Available From: https://www.bloomberg.com/graphics/covid-vaccine-tracker-global-distribution/
  7. Dash S, Chakraborty C, Giri SK. BIFM: Big-data driven intelligent forecasting model for COVID-19. IEEE Access 2021; 9: 97505-17.
  8. Annas S, Isbar Pratama M, Rifandi M, Sanusi W, Side S. Stability analysis and numerical simulation of SEIR model for pandemic COVID-19 spread in Indonesia. Chaos Solitons Fractals 2020; 139: 110072. doi: 10.1016/j.chaos.2020.110072 PMID: 32834616
  9. Sharomi O, Podder CN, Gumel AB, Song B. Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment. Math Biosci Eng 2008; 5(1): 145-74. doi: 10.3934/mbe.2008.5.145 PMID: 18193936
  10. Dash S, Chakraborty C, Giri SK, Pani SK. Intelligent computing on time-series data analysis and prediction of COVID-19 pandemics. Pattern Recognit Lett 2021; 151: 69-75. doi: 10.1016/j.patrec.2021.07.027 PMID: 34413555
  11. Pani S, Dash S, dos Santos WP, Bukhari SAC, Flammini F. Assessing covid-19 and other pandemics and epidemics using computational modelling and data analysis. Heidelberg: Springer 2022; pp. 978-3030797522. doi: 10.1007/978-3-030-79753-9
  12. Asamoah JKK, Jin Z, Sun GQ, et al. Sensitivity assessment and optimal economic evaluation of a new COVID-19 compartmental epidemic model with control interventions. Chaos Solitons Fractals 2021; 146: 110885. doi: 10.1016/j.chaos.2021.110885 PMID: 33776250
  13. Ferguson N, Laydon D, Nedjati GG. To mask or not to mask: Modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic. Infect Dis Model 2020; 5: 293-308. doi: 10.1016/j.idm.2020.04.001
  14. Panovska-Griffiths J. Can mathematical modelling solve the current Covid-19 crisis? BMC Public Health 2020; 20(1): 551. doi: 10.1186/s12889-020-08671-z PMID: 32331516
  15. Fokas AS, Dikaios N, Kastis GA. Mathematical models and deep learning for predicting the number of individuals reported to be infected with SARS-CoV-2. J R Soc Interface 2020; 17(169): 20200494. doi: 10.1098/rsif.2020.0494 PMID: 32752997
  16. Shahid F, Zameer A, Muneeb M. Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM. Chaos Solitons Fractals 2020; 140: 110212. doi: 10.1016/j.chaos.2020.110212 PMID: 32839642
  17. Alassafi MO, Jarrah M, Alotaibi R. Time series predicting of COVID-19 based on deep learning. Neurocomputing 2022; 468: 335-44. doi: 10.1016/j.neucom.2021.10.035 PMID: 34690432
  18. Chandra R, Jain A, Singh Chauhan D. Deep learning via LSTM models for COVID-19 infection forecasting in India. PLoS One 2022; 17(1): e0262708. doi: 10.1371/journal.pone.0262708 PMID: 35089976
  19. Nabi KN, Tahmid MT, Rafi A, Kader ME, Haider MA. Forecasting COVID-19 cases: A comparative analysis between recurrent and convolutional neural networks. Results Phys 2021; 24: 104137. doi: 10.1016/j.rinp.2021.104137 PMID: 33898209
  20. Singh KR, Dash S, Deka B, Biswas S. Mobile technology solutions for COVID-19.emerging technologies for battling COVID-19. Heidelberg: Springer 2021.
  21. Rahman A, Dash S, Kamaleldin M. A Comprehensive study of mobile computing in telemedicine. Advanced Informatics for Computing Research 2019; pp. 413-25.
  22. Patra TK, Mohapatra P, Mishra R, et al. Automatic contactless health parameters measurement and monitoring apparatus. 2021107455, Granted 08.12.2021. IP Australia 2021.
  23. Desai SB, Pareek A, Lungren MP. Deep learning and its role in COVID-19 medical imaging. Intelligence-Based Medicine 2020; 3-4: 100013. doi: 10.1016/j.ibmed.2020.100013 PMID: 33169117
  24. Ke YY, Peng TT, Yeh TK, et al. Artificial intelligence approach fighting COVID-19 with repurposing drugs. Biomed J 2020; 43(4): 355-62. doi: 10.1016/j.bj.2020.05.001 PMID: 32426387
  25. Biswas S, Dash S, Deka B. A device for easing the anxiety of a user 2020.
  26. Ahamad MM, Aktar S, Rashed-Al-Mahfuz M, et al. A machine learning model to identify early stage symptoms of SARS-Cov-2 infected patients. Expert Syst Appl 2020; 160: 113661. doi: 10.1016/j.eswa.2020.113661 PMID: 32834556
  27. Shahin AI, Almotairi S. An accurate and fast cardio-views classification system based on fused deep features and LSTM. IEEE Access 2020; 8: 135184-94. doi: 10.1109/ACCESS.2020.3010326
  28. Zeroual A, Harrou F, Dairi A, Sun Y. Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study. Chaos Solitons Fractals 2020; 140: 110121. doi: 10.1016/j.chaos.2020.110121 PMID: 32834633
  29. Chimmula VKR, Zhang L. Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos Solitons Fractals 2020; 135: 109864. doi: 10.1016/j.chaos.2020.109864 PMID: 32390691
  30. Abbasimehr H, Paki R. 2021; Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization. Chaos Solitons Fractals 2021; 142: 110511. doi: 10.1016/j.chaos.2020.110511
  31. Wang P, Zheng X, Ai G, Liu D, Zhu B. Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran. Chaos Solitons Fractals 2020; 140: 110214.
  32. Pani SK, Dash S, dos Santos W, Chan Bukhari SA, Flammini F. Asessing covid-19 and other pandemics and epidemics using computational modelling and data analysis. Switzerland: Springer Nature 2022. doi: 10.1111/biom.13802
  33. Dash S, Pani SK, Rodrigues PC, Majhi B. Deep learning, Machine learning and IoT in biomedical and health informatics: Techniques and applications. Florida: CRC Press 2022; p. 382. doi: 10.1201/9780367548445
  34. Dash S, Acharya BR, Mittal M, Abraham A, Kelemen A. Deep learning techniques for biomedical and health informatics. Heidelberg: Springer 2022.
  35. Biswas S, Dash S. LSTM-CNN Deep learning-based hybrid system for real time covid-19 data analysis and prediction using twitter dataAssessing COVID-19 and Other Pandemics and Epidemics using Computational Modelling and Data Analysis. Heidelberg: Springer 2022. doi: 10.1007/978-3-030-79753-9_14
  36. Tutsoy O, Polat A, Colak S, Balikci K. Development of a Multidimensional parametric model with non-pharmacological policies for predicting the COVID-19 pandemic casualties. IEEE Access 2020; 8: 225272-83. doi: 10.1109/ACCESS.2020.3044929 PMID: 34812374
  37. Tutsoy O. COVID-19 epidemic and opening of the schools: Artificial intelligence-based long-term adaptive policy making to control the pandemic diseases. IEEE Access 2021; 9: 68461-71. doi: 10.1109/ACCESS.2021.3078080
  38. Wang Z, Wang Q, Wu T. A novel hybrid model for water quality prediction based on VMD and IGOA optimized for LSTM. Front Environ Sci Eng 2023; 17(7): 88. doi: 10.1007/s11783-023-1688-y
  39. Wu J, Wang Z, Hu Y, Tao S, Dong J. Runoff Forecasting using Convolutional Neural Networks and optimized Bi-directional Long Short-term Memory. Water Resour Manage 2023; 37(2): 937-53. doi: 10.1007/s11269-022-03414-8
  40. Abumohsen M, Owda AY, Owda M. Electrical load forecasting using LSTM, GRU, and RNN algorithms. Energies 2023; 16(5): 2283. doi: 10.3390/en16052283
  41. Dairi A, Harrou F, Zeroual A, Hittawe MM, Sun Y. Comparative study of machine learning methods for COVID-19 transmission forecasting. J Biomed Inform 2021; 118: 103791. doi: 10.1016/j.jbi.2021.103791 PMID: 33915272
  42. Zain ZM, Alturki NM. COVID-19 Pandemic Forecasting Using CNN-LSTM: A Hybrid Approach. J Contr Sci Eng 2021; 2021: 1-23. doi: 10.1155/2021/8785636
  43. Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE 1998; 86(11): 2278-324. doi: 10.1109/5.726791
  44. Rawat W, Wang Z. Deep convolutional neural networks for image classification: A comprehensive review. Neural Comput 2017; 29(9): 2352-449. doi: 10.1162/neco_a_00990 PMID: 28599112
  45. Hinz T, Navarro-Guerrero N, Magg S, Wermter S. Speeding up the hyperparameter optimization of deep convolutional neural networks. Int J Comput Intell Appl 2018; 17(2): 1850008. doi: 10.1142/S1469026818500086
  46. Chung J, Gulcehre C, Cho K, Bengio Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv:14123555 2014.
  47. Chang DT. Bayesian hyperparameter optimization with BoTorch, GPyTorch and Ax. arXiv:191205686 2019.
  48. Sharma P, Balabantaray BK, Bora K, Mallik S, Kasugai K, Zhao Z. An ensemble-based deep convolution neural network for computer-aided Polyps identification from colonoscopy. Front Genet 2022; 13: 844391. doi: 10.3389/fgene.2022.844391 PMID: 35559018
  49. Karri M, Annavarapu CSR, Mallik S, Zhao Z, Acharya UR. Multi-class nucleus detection and classification using deep convolutional neural network with enhanced high dimensional dissimilarity translation model on cervical cells. Biocybern Biomed Eng 2022; 42(3): 797-814. doi: 10.1016/j.bbe.2022.06.003
  50. Ghosh A, Jana ND, Mallik S, Zhao Z. Designing optimal convolutional neural network architecture using differential evolution algorithm. Patterns 2022; 3(9): 100567. doi: 10.1016/j.patter.2022.100567 PMID: 36124301

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers