Identification of Spatial Domains, Spatially Variable Genes, and Genetic Association Studies of Alzheimer Disease with an Autoencoder-based Fuzzy Clustering Algorithm


Cite item

Full Text

Abstract

Introduction:Transcriptional gene expressions and their corresponding spatial information are critical for understanding the biological function, mutual regulation, and identification of various cell types.

Materials and Methods:Recently, several computational methods have been proposed for clustering using spatial transcriptional expression. Although these algorithms have certain practicability, they cannot utilize spatial information effectively and are highly sensitive to noise and outliers. In this study, we propose ACSpot, an autoencoder-based fuzzy clustering algorithm, as a solution to tackle these problems. Specifically, we employed a self-supervised autoencoder to reduce feature dimensionality, mitigate nonlinear noise, and learn high-quality representations. Additionally, a commonly used clustering method, Fuzzy c-means, is used to achieve improved clustering results. In particular, we utilize spatial neighbor information to optimize the clustering process and to fine-tune each spot to its associated cluster category using probabilistic and statistical methods.

Result and Discussion:The comparative analysis on the 10x Visium human dorsolateral prefrontal cortex (DLPFC) dataset demonstrates that ACSpot outperforms other clustering algorithms. Subsequently, spatially variable genes were identified based on the clustering outcomes, revealing a striking similarity between their spatial distribution and the subcluster spatial distribution from the clustering results. Notably, these spatially variable genes include APP, PSEN1, APOE, SORL1, BIN1, and PICALM, all of which are well-known Alzheimer's disease-associated genes.

Conclusion:In addition, we applied our model to explore some potential Alzheimer's disease correlated genes within the dataset and performed Gene Ontology (GO) enrichment and gene-pathway analyses for validation, illustrating the capability of our model to pinpoint genes linked to Alzheimer’s disease.

About the authors

Yaxuan Cui

Department of Computer Science, University of Tsukuba

Email: info@benthamscience.net

Leyi Wei

Center of Artificial Intelligence driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University

Author for correspondence.
Email: info@benthamscience.net

Ruheng Wang

School of Software, Shandong University

Email: info@benthamscience.net

Xiucai Ye

Department of Computer Science, University of Tsukuba

Author for correspondence.
Email: info@benthamscience.net

Tetsuya Sakurai

Department of Computer Science, University of Tsukuba

Email: info@benthamscience.net

References

  1. Chen WT, Lu A, Craessaerts K, et al. Spatial transcriptomics and in situ sequencing to study alzheimer’s disease. Cell 2020; 182(4): 976-991.e19. doi: 10.1016/j.cell.2020.06.038 PMID: 32702314
  2. Rivera J, Sharma B, Torres MM, Kumar S. Factors affecting the GABAergic synapse function in Alzheimer’s disease: Focus on microRNAs. Ageing Res Rev 2023; 92: 102123. doi: 10.1016/j.arr.2023.102123 PMID: 37967653
  3. Murdock MH, Tsai LH. Insights into Alzheimer’s disease from single-cell genomic approaches. Nat Neurosci 2023; 26(2): 181-95. doi: 10.1038/s41593-022-01222-2 PMID: 36593328
  4. Navarro JF, Croteau DL, Jurek A, et al. Spatial transcriptomics reveals genes associated with dysregulated mitochondrial functions and stress signaling in alzheimer disease. iScience 2020; 23(10): 101556. doi: 10.1016/j.isci.2020.101556 PMID: 33083725
  5. Cui Y, Zhang S, Liang Y, Wang X, Ferraro TN, Chen Y. Consensus clustering of single-cell RNA-seq data by enhancing network affinity. Brief Bioinform 2021; 22(6): bbab236. doi: 10.1093/bib/bbab236 PMID: 34160582
  6. Paik DT, Cho S, Tian L, Chang HY, Wu JC. Single-cell RNA sequencing in cardiovascular development, disease and medicine. Nat Rev Cardiol 2020; 17(8): 457-73. doi: 10.1038/s41569-020-0359-y PMID: 32231331
  7. Zhang X, Wang X, Shivashankar GV, Uhler C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for Alzheimer’s disease. Nat Commun 2022; 13(1): 7480. doi: 10.1038/s41467-022-35233-1 PMID: 36463283
  8. Potter SS. Single-cell RNA sequencing for the study of development, physiology and disease. Nat Rev Nephrol 2018; 14(8): 479-92. doi: 10.1038/s41581-018-0021-7 PMID: 29789704
  9. Butcher DT, Alliston T, Weaver VM. A tense situation: Forcing tumour progression. Nat Rev Cancer 2009; 9(2): 108-22. doi: 10.1038/nrc2544 PMID: 19165226
  10. Trapnell C. Defining cell types and states with single-cell genomics. Genome Res 2015; 25(10): 1491-8. doi: 10.1101/gr.190595.115 PMID: 26430159
  11. Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 2015; 33(5): 495-502. doi: 10.1038/nbt.3192 PMID: 25867923
  12. Maynard KR, Collado-Torres L, Weber LM, et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nat Neurosci 2021; 24(3): 425-36. doi: 10.1038/s41593-020-00787-0 PMID: 33558695
  13. Stegle O, Parts L, Piipari M, Winn J, Durbin R. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nat Protoc 2012; 7(3): 500-7. doi: 10.1038/nprot.2011.457 PMID: 22343431
  14. LanctA’t C, Cheutin T, Cremer M, Cavalli G, Cremer T. Dynamic genome architecture in the nuclear space: Regulation of gene expression in three dimensions. Nat Rev Genet 2007; 8(2): 104-15. doi: 10.1038/nrg2041 PMID: 17230197
  15. Engreitz JM, Ollikainen N, Guttman M. Long non-coding RNAs: Spatial amplifiers that control nuclear structure and gene expression. Nat Rev Mol Cell Biol 2016; 17(12): 756-70. doi: 10.1038/nrm.2016.126 PMID: 27780979
  16. Liao J, Lu X, Shao X, Zhu L, Fan X. Uncovering an Organ’s molecular architecture at single-cell resolution by spatially resolved transcriptomics. Trends Biotechnol 2021; 39(1): 43-58. doi: 10.1016/j.tibtech.2020.05.006 PMID: 32505359
  17. Cardona-Alberich A, Tourbez M, Pearce SF, Sibley CR. Elucidating the cellular dynamics of the brain with single-cell RNA sequencing. RNA Biol 2021; 18(7): 1063-84. doi: 10.1080/15476286.2020.1870362 PMID: 33499699
  18. Shan X, Chen J, Dong K, Zhou W, Zhang S. Deciphering the spatial modular patterns of tissues by integrating spatial and single-cell transcriptomic data. J Comput Biol 2022; 29(7): 650-63. doi: 10.1089/cmb.2021.0617 PMID: 35727094
  19. Medaglia C, Giladi A, Stoler-Barak L, et al. Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq. Science 2017; 358(6370): 1622-6. doi: 10.1126/science.aao4277 PMID: 29217582
  20. Lein E, Borm LE, Linnarsson S. The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing. Science 2017; 358(6359): 64-9. doi: 10.1126/science.aan6827 PMID: 28983044
  21. Ortiz C. CarlA(c)n M, Meletis K. Spatial transcriptomics: Molecular maps of the mammalian brain. Annu Rev Neurosci 2021; 44(1): 547-62. doi: 10.1146/annurev-neuro-100520-082639 PMID: 33914592
  22. Lee J, Yoo M, Choi J. Recent advances in spatially resolved transcriptomics: Challenges and opportunities. BMB Rep 2022; 55(3): 113-24. doi: 10.5483/BMBRep.2022.55.3.014 PMID: 35168703
  23. Shapiro E, Biezuner T, Linnarsson S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 2013; 14(9): 618-30. doi: 10.1038/nrg3542 PMID: 23897237
  24. Wen T. Recent advances in single-cell sequencing technologies. Precis Clin Med 2022; 5(1)
  25. Moffitt JR, Hao J, Wang G, Chen KH, Babcock HP, Zhuang X. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. Proc Natl Acad Sci 2016; 113(39): 11046-51. doi: 10.1073/pnas.1612826113 PMID: 27625426
  26. Lee JH, Daugharthy ER, Scheiman J, et al. Highly multiplexed subcellular RNA sequencing in situ. Science 2014; 343(6177): 1360-3. doi: 10.1126/science.1250212 PMID: 24578530
  27. Wang X, Allen WE, Wright MA, et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 2018; 361(6400): eaat5691. doi: 10.1126/science.aat5691 PMID: 29930089
  28. Moffitt JR, Bambah-Mukku D, Eichhorn SW, et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 2018; 362(6416): eaau5324. doi: 10.1126/science.aau5324 PMID: 30385464
  29. Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 2015; 348(6233): aaa6090. doi: 10.1126/science.aaa6090 PMID: 25858977
  30. Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, Cai L. Single-cell in situ RNA profiling by sequential hybridization. Nat Methods 2014; 11(4): 360-1. doi: 10.1038/nmeth.2892 PMID: 24681720
  31. Shah S, Lubeck E, Zhou W, Cai L. In Situ Transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus. Neuron 2016; 92(2): 342-57. doi: 10.1016/j.neuron.2016.10.001 PMID: 27764670
  32. Eng CHL, Lawson M, Zhu Q, et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature 2019; 568(7751): 235-9. doi: 10.1038/s41586-019-1049-y PMID: 30911168
  33. Vickovic S, Eraslan G, SalmA(c)n F, et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat Methods 2019; 16(10): 987-90. doi: 10.1038/s41592-019-0548-y PMID: 31501547
  34. Rodriques SG, Stickels RR, Goeva A, et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 2019; 363(6434): 1463-7. doi: 10.1126/science.aaw1219 PMID: 30923225
  35. Stickels RR, Murray E, Kumar P, et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat Biotechnol 2021; 39(3): 313-9. doi: 10.1038/s41587-020-0739-1 PMID: 33288904
  36. Ji AL, Rubin AJ, Thrane K, et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. Cell 2020; 182(2): 497-514.e22. doi: 10.1016/j.cell.2020.05.039 PMID: 32579974
  37. Hodges E, Smith AD, Kendall J, et al. High definition profiling of mammalian DNA methylation by array capture and single molecule bisulfite sequencing. Genome Res 2009; 19(9): 1593-605. doi: 10.1101/gr.095190.109 PMID: 19581485
  38. Daxin Jiang, Chun Tang, Aidong Zhang. Cluster analysis for gene expression data: A survey. IEEE Trans Knowl Data Eng 2004; 16(11): 1370-86. doi: 10.1109/TKDE.2004.68
  39. Heumos L, Schaar AC, Lance C, et al. Best practices for single-cell analysis across modalities. Nat Rev Genet 2023; 24(8): 550-72. doi: 10.1038/s41576-023-00586-w PMID: 37002403
  40. Yip KY, Cheng C, Bhardwaj N, et al. Classification of human genomic regions based on experimentally determined binding sites of more than 100 transcription-related factors. Genome Biol 2012; 13(9): R48. doi: 10.1186/gb-2012-13-9-r48 PMID: 22950945
  41. Chang Y, He F, Wang J, et al. Define and visualize pathological architectures of human tissues from spatially resolved transcriptomics using deep learning. Comput Struct Biotechnol J 2022; 20: 4600-17. doi: 10.1016/j.csbj.2022.08.029 PMID: 36090815
  42. Monjo T, Koido M, Nagasawa S, Suzuki Y, Kamatani Y. Efficient prediction of a spatial transcriptomics profile better characterizes breast cancer tissue sections without costly experimentation. Sci Rep 2022; 12(1): 4133. doi: 10.1038/s41598-022-07685-4 PMID: 35260632
  43. Heydari AA, Sindi SS. Deep learning in spatial transcriptomics: Learning from the next next-generation sequencing. 2022. doi: 10.1101/2022.02.28.482392
  44. Luo W, Lin GN, Song W, et al. Single-cell spatial transcriptomic analysis reveals common and divergent features of developing postnatal granule cerebellar cells and medulloblastoma. BMC Biol 2021; 19(1): 135. doi: 10.1186/s12915-021-01071-8 PMID: 34210306
  45. Na S, Xumin L, Yong G. Research on k-means Clustering Algorithm: An improved k-means clustering algorithm. 2010 Third International Symposium on Intelligent Information Technology and Security Informatics 63-7. doi: 10.1109/IITSI.2010.74
  46. Ng A, Jordan M, Weiss Y. On Spectral Clustering: Analysis and an algorithm. in Advances in Neural Information Processing Systems 2001; 14.
  47. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech Theory Exp 2008; 10008.
  48. Hu J, Schroeder A, Coleman K, Chen C, Auerbach BJ, Li M. Statistical and machine learning methods for spatially resolved transcriptomics with histology. Comput Struct Biotechnol J 2021; 19: 3829-41. doi: 10.1016/j.csbj.2021.06.052 PMID: 34285782
  49. Rudolph M, Wandt B, Rosenhahn B. Structuring Autoencoders. 2019. doi: 10.1109/ICCVW.2019.00075
  50. Lan K, Wang D, Fong S, Liu L, Wong KKL, Dey N. A survey of data mining and deep learning in bioinformatics. J Med Syst 2018; 42(8): 139. doi: 10.1007/s10916-018-1003-9 PMID: 29956014
  51. Suo Y, Liu T, Jia X, Yu F. Application of clustering analysis in brain gene data based on deep learning. IEEE Access 2019; 7: 2947-56. doi: 10.1109/ACCESS.2018.2886425
  52. Karlik B. Soft computing methods in bioinformatics: A comprehensive review. Mathematical and Computational Applications 2013; 18(3): 176-97. doi: 10.3390/mca18030176
  53. Hassanien AE, Al-Shammari ET, Ghali NI. Computational intelligence techniques in bioinformatics. Comput Biol Chem 2013; 47: 37-47. doi: 10.1016/j.compbiolchem.2013.04.007 PMID: 23891719
  54. Ezugwu AE, Ikotun AM, Oyelade OO, et al. A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng Appl Artif Intell 2022; 110: 104743. doi: 10.1016/j.engappai.2022.104743
  55. Masulli F, Mitra S. Natural computing methods in bioinformatics: A survey. Inf Fusion 2009; 10(3): 211-6. doi: 10.1016/j.inffus.2008.12.002
  56. Bezdek JC, Ehrlich R, Full W. FCM: The fuzzy c-means clustering algorithm. Comput Geosci 1984; 10(2-3): 191-203. doi: 10.1016/0098-3004(84)90020-7
  57. Wolf FA, Angerer P, Theis FJ. SCANPY: Large-scale single-cell gene expression data analysis. Genome Biol 2018; 19(1): 15. doi: 10.1186/s13059-017-1382-0 PMID: 29409532
  58. Hubert L, Arabie P. Comparing partitions. J Classif 1985; 2(1): 193-218. doi: 10.1007/BF01908075
  59. Pigino G, Morfini G, Pelsman A, Mattson MP, Brady ST, Busciglio J. Alzheimer’s presenilin 1 mutations impair kinesin-based axonal transport. J Neurosci 2003; 23(11): 4499-508. doi: 10.1523/JNEUROSCI.23-11-04499.2003 PMID: 12805290
  60. Jonsson T, Atwal JK, Steinberg S, et al. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 2012; 488(7409): 96-9. doi: 10.1038/nature11283 PMID: 22801501
  61. Mullan M, Crawford F, Axelman K, et al. A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of beta-amyloid. Nat Genet 1992; 1(5): 345-7. doi: 10.1038/ng0892-345 PMID: 1302033
  62. Reitz C, Cheng R, Rogaeva E, et al. Meta-analysis of the association between variants in SORL1 and Alzheimer disease. Arch Neurol 2011; 68(1): 99-106. doi: 10.1001/archneurol.2010.346 PMID: 21220680
  63. Sadick JS, O’Dea MR, Hasel P, Dykstra T, Faustin A, Liddelow SA. Astrocytes and oligodendrocytes undergo subtype-specific transcriptional changes in Alzheimer’s disease. Neuron 2022; 110(11): 1788-1805.e10. doi: 10.1016/j.neuron.2022.03.008 PMID: 35381189
  64. Chapuis J, Hansmannel F, Gistelinck M, et al. Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Mol Psychiatry 2013; 18(11): 1225-34. doi: 10.1038/mp.2013.1 PMID: 23399914
  65. Goate A. Segregation of a missense mutation in the amyloid β-protein precursor gene with familial Alzheimer’s disease. J Alzheimers Dis 2006; 9(s3) (Suppl.): 341-7. doi: 10.3233/JAD-2006-9S338 PMID: 16914872
  66. Wang R, et al. DeepBIO: an automated and interpretable deep-learning platform for high-throughput biological sequence prediction, functional annotation and visualization analysis. Nucleic Acids Res 2023; 51(7): 3017-29.
  67. Wang R, Jin J, Zou Q, Nakai K, Wei L. Predicting protein-peptide binding residues via interpretable deep learning. Bioinformatics 2022; 38(13): 3351-60. doi: 10.1093/bioinformatics/btac352 PMID: 35604077
  68. Jiang Y, Wang R, Feng J, et al. Explainable deep hypergraph learning modeling the peptide secondary structure prediction. Adv Sci 2023; 10(11): 2206151. doi: 10.1002/advs.202206151 PMID: 36794291
  69. Wang T, Wang R, Wei L. AttenSyn: An attention-based deep graph neural network for anticancer synergistic drug combination prediction. J Chem Inf Model 2023; acs.jcim.3c00709. doi: 10.1021/acs.jcim.3c00709 PMID: 37565997
  70. Wang R, Feng Y, Sun M, et al. MVIL6: Accurate identification of IL-6-induced peptides using multi-view feature learning. Int J Biol Macromol 2023; 246: 125412. doi: 10.1016/j.ijbiomac.2023.125412 PMID: 37327922
  71. Wei Q, Wang R, Jiang Y, et al. ConPep: Prediction of peptide contact maps with pre-trained biological language model and multi-view feature extracting strategy. Comput Biol Med 2023; 167: 107631. doi: 10.1016/j.compbiomed.2023.107631 PMID: 37948966
  72. MartA-nez-Serra R. Alonso-Nanclares L, Cho K, Giese KP. Emerging insights into synapse dysregulation in Alzheimer’s disease. Brain Commun 2022; 4(2): fcac083. doi: 10.1093/braincomms/fcac083 PMID: 35652120
  73. de la Torre-Ubieta L, Bonni A. Transcriptional regulation of neuronal polarity and morphogenesis in the mammalian brain. Neuron 2011; 72(1): 22-40. doi: 10.1016/j.neuron.2011.09.018 PMID: 21982366
  74. Zhang S, Xie L, Cui Y, Carone BR, Chen Y. Detecting fear-memory-related genes from neuronal scrna-seq data by diverse distributions and bhattacharyya distance. Biomolecules 2022; 12(8): 1130. doi: 10.3390/biom12081130 PMID: 36009024
  75. Zhu LQ, Zheng HY, Peng CX, et al. Protein phosphatase 2A facilitates axonogenesis by dephosphorylating CRMP2. J Neurosci 2010; 30(10): 3839-48. doi: 10.1523/JNEUROSCI.5174-09.2010 PMID: 20220019

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers