P4PC: A Portal for Bioinformatics Resources of piRNAs and circRNAs

  • Authors: Liu Y.1, Li R.2, Ding Y.3, Hei X.4, Wu F.5
  • Affiliations:
    1. Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi'an University of Technology
    2. Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, School of Computer Science and Engineering, Xi'an University of Technology
    3. Center for High Performance Computing, Shenzhen Institutes of Advanced Technology,, Chinese Academy of Sciences,
    4. Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, School of Computer Science and Engineering, Xi'an University of Technology,
    5. Division of Biomedical Engineering, Department of Mechanical Engineering, Department of Computer Science, University of Saskatchewan
  • Issue: Vol 19, No 9 (2024)
  • Pages: 873-878
  • Section: Life Sciences
  • URL: https://jdigitaldiagnostics.com/1574-8936/article/view/644093
  • DOI: https://doi.org/10.2174/0115748936289420240117100823
  • ID: 644093

Cite item

Full Text

Abstract

Background:PIWI-interacting RNAs (piRNAs) and circular RNAs (circRNAs) are two kinds of non-coding RNAs (ncRNAs) that play important roles in epigenetic regulation, transcriptional regulation, post-transcriptional regulation of many biological processes. Although there exist various resources, it is still challenging to select such resources for specific research projects on ncRNAs.

Methods:In order to facilitate researchers in finding the appropriate bioinformatics sources for studying ncRNAs, we created a novel portal named P4PC that provides computational tools and data sources of piRNAs and circRNAs.

Results:249 computational tools, 126 databases and 420 papers are manually curated in P4PC. All entries in P4PC are classified in 5 groups and 26 subgroups. The list of resources is summarized in the first page of each group.

Conclusion:According to their research proposes, users can quickly select proper resources for their research projects by viewing detail information and comments in P4PC. Database URL is http://www.ibiomedical.net/Portal4PC/ and https://43.138.46.5/Portal4PC/.

About the authors

Yajun Liu

Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi'an University of Technology

Author for correspondence.
Email: info@benthamscience.net

Ru Li

Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, School of Computer Science and Engineering, Xi'an University of Technology

Email: info@benthamscience.net

Yulian Ding

Center for High Performance Computing, Shenzhen Institutes of Advanced Technology,, Chinese Academy of Sciences,

Email: info@benthamscience.net

Xinhong Hei

Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, School of Computer Science and Engineering, Xi'an University of Technology,

Email: info@benthamscience.net

Fang-Xiang Wu

Division of Biomedical Engineering, Department of Mechanical Engineering, Department of Computer Science, University of Saskatchewan

Author for correspondence.
Email: info@benthamscience.net

References

  1. van Bakel H, Nislow C, Blencowe BJ, Hughes TR. Most "dark matter" transcripts are associated with known genes. PLoS Biol 2010; 8(5): e1000371. doi: 10.1371/journal.pbio.1000371 PMID: 20502517
  2. Birney E, Stamatoyannopoulos JA, Dutta A, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007; 447(7146): 799-816. doi: 10.1038/nature05874 PMID: 17571346
  3. Brosius J. Waste not, want not – transcript excess in multicellular eukaryotes. Trends Genet 2005; 21(5): 287-8. doi: 10.1016/j.tig.2005.02.014 PMID: 15851065
  4. Cheng J, Kapranov P, Drenkow J, et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 2005; 308(5725): 1149-54. doi: 10.1126/science.1108625 PMID: 15790807
  5. Hüttenhofer A, Schattner P, Polacek N. Non-coding RNAs: Hope or hype? Trends Genet 2005; 21(5): 289-97. doi: 10.1016/j.tig.2005.03.007 PMID: 15851066
  6. Morris KV. Non-coding RNAs and epigenetic regulation of gene expression: Drivers of natural selection. Caister Acad Press 2012.
  7. Washietl S, Pedersen JS, Korbel JO, et al. Structured RNAs in the ENCODE selected regions of the human genome. Genome Res 2007; 17(6): 852-64. doi: 10.1101/gr.5650707 PMID: 17568003
  8. Lukasik A, Wójcikowski M, Zielenkiewicz P. Tools4miRs – one place to gather all the tools for miRNA analysis. Bioinformatics 2016; 32(17): 2722-4. doi: 10.1093/bioinformatics/btw189 PMID: 27153626
  9. Chen L, Heikkinen L, Wang C, Yang Y, Knott KE, Wong G. miRToolsGallery: A tag-based and rankable microRNA bioinformatics resources database portal. Database 2018; 2018: bay004. doi: 10.1093/database/bay004 PMID: 29688355
  10. Aghaee-Bakhtiari SH, Arefian E, Lau P. miRandb: A resource of online services for miRNA research. Brief Bioinform 2018; 19(2): 254-62. PMID: 28049134
  11. Stępień E, Costa M, Enguita F. miRNAtools: Advanced training using the miRNA web of knowledge. Noncoding RNA 2018; 4(1): 5. doi: 10.3390/ncrna4010005 PMID: 29657302
  12. Solomon J, Kern F, Fehlmann T. Meese E, Keller A, Humi R. HumiR Web services, tools and databases for exploring human microRNA data. Biomolecules 2020; 10(11): 1576. doi: 10.3390/biom10111576 PMID: 33233537
  13. Paschoal AR, Maracaja-Coutinho V, Setubal JC, Simões ZLP, Verjovski-Almeida S. Non-coding transcription characterization and annotation. RNA Biology 2012; 9(3): 274-82.
  14. Liu Y, Li A, Xie G, Liu G, Hei X. Computational methods and online resources for identification of piRNA-related molecules. Interdiscip Sci 2021; 13(2): 176-91. doi: 10.1007/s12539-021-00428-5 PMID: 33886096
  15. Zoch A, Auchynnikava T, Berrens RV, et al. SPOCD1 is an essential executor of piRNA-directed de novo DNA methylation. Nature 2020; 584(7822): 635-9. doi: 10.1038/s41586-020-2557-5 PMID: 32674113
  16. Mugat B, Nicot S, Varela-Chavez C, et al. The Mi-2 nucleosome remodeler and the Rpd3 histone deacetylase are involved in piRNA-guided heterochromatin formation. Nat Commun 2020; 11(1): 2818. doi: 10.1038/s41467-020-16635-5 PMID: 32499524
  17. Dai P, Wang X, Gou LT, et al. A translation-activating function of MIWI/piRNA during mouse spermiogenesis. Cell 2019; 179(7): 1566-1581.e16. doi: 10.1016/j.cell.2019.11.022 PMID: 31835033
  18. Fei R, Wan Y, Hu B, Li A. A novel network core structure extraction algorithm utilized variational autoencoder for community detection. Expert Syst Appl 2023; 222: 119775.
  19. Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 2012; 7(2): e30733. doi: 10.1371/journal.pone.0030733 PMID: 22319583
  20. Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013; 19(2): 141-57. doi: 10.1261/rna.035667.112 PMID: 23249747
  21. Glažar P, Papavasileiou P, Rajewsky N. circBase: A database for circular RNAs. RNA 2014; 20(11): 1666-70. doi: 10.1261/rna.043687.113 PMID: 25234927

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers