Anti-aging Strategies and Topical Delivery of Biopolymer-based Nanocarriers for Skin Cancer Treatment


Cite item

Full Text

Abstract

Environmental factors like UV radiation and epigenetic changes are significant factors for skin cancer that trigger early aging. This review provides essential information on cancer development concerning aging, the receptors involved, and the therapeutic targets. Biopolymers like polysaccharide, polyphenols, proteins, and nucleic acid plays a vital role in the regulation of normal cell homeostasis. Therefore, it is pertinent to explore the role of biopolymers as antiaging formulations and the possibility of these formulations being used against cancer via topical administrations. As UV radiation is one of the predominant factors in causing skin cancer, the association of receptors between aging and cancer indicated that insulin receptor, melatonin receptor, toll-like receptor, SIRT 1 receptor, tumor-specific T cell receptor and mitochondria-based targeting could be used to direct therapeutics for suppression of cancer and prevent aging. Biopolymer-based nanoformulations have tremendously progressed by entrapment of drugs like curcumin and resveratrol which can prevent cancer and aging simultaneously. Certain protein signaling or calcium and ROS signaling pathways are different for cancer and aging. The involvement of mitochondrial DNA mutation along with telomere shortening with a change in cellular energetics leading to genomic instability in the aging process can also induce mitochondrial dysfunction and epigenetic alterations leading to skin cancer. Therefore, the use of biopolymers as a topical supplement during the aging process can result in the prevention of cancer.

About the authors

Jino Ramaraj

Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education

Email: info@benthamscience.net

Shoba Narayan

Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education

Author for correspondence.
Email: info@benthamscience.net

References

  1. Ramakrishnan V, Aiswarya PS, Pallavi K, Husain RA, Ahmed SS. Photoaging and antiphotoaging activity of compounds derived from marine origin. Encyclopedia of Marine Biotechnology 2020; 11(30): 1641-57. doi: 10.1002/9781119143802.ch69
  2. Blagosklonny MV. Selective anti-cancer agents as anti-aging drugs. Cancer Biol Ther 2013; 14(12): 1092-7. doi: 10.4161/cbt.27350 PMID: 24345884
  3. Ball WT, Alsing J, Mortlock DJ, et al. Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery. Atmos Chem Phys 2018; 18(2): 1379-94. doi: 10.5194/acp-18-1379-2018
  4. Diepgen TL, Mahler V. The epidemiology of skin cancer. Br J Dermatol 2002; 146(s61) (Suppl. 61): 1-6. doi: 10.1046/j.1365-2133.146.s61.2.x PMID: 11966724
  5. Kricker A, Armstrong BK, English DR. Sun exposure and non-melanocytic skin cancer. Cancer Causes Control 1994; 5(4): 367-92.
  6. Bergfeld WF. The aging skin. Int J Fertil Womens Med 1997; 42(2): 57-66. PMID: 9160214
  7. Armstrong BK, Kricker A. Skin Cancer. Dermatol Clin 1995; 13(3): 583-94. doi: 10.1016/S0733-8635(18)30064-0 PMID: 7554506
  8. Lewis DA, Travers JB, Spandau DF. A new paradigm for the role of aging in the development of skin cancer. J Invest Dermatol 2009; 129(3): 787-91. doi: 10.1038/jid.2008.293 PMID: 18818672
  9. Epstein JH. Photocarcinogenesis, skin cancer, and aging. J Am Acad Dermatol 1983; 9(4): 487-502. doi: 10.1016/S0190-9622(83)70160-X PMID: 6355213
  10. Rossi DJ, Jamieson CHM, Weissman IL. Stems cells and the pathways to aging and cancer. Cell 2008; 132(4): 681-96. doi: 10.1016/j.cell.2008.01.036 PMID: 18295583
  11. Liang SB, Ohtsuki Y, Furihata M, et al. Sun-exposure- and aging-dependent p53 protein accumulation results in growth advantage for tumour cells in carcinogenesis of nonmelanocytic skin cancer. Virchows Arch 1999; 434(3): 193-9. doi: 10.1007/s004280050327 PMID: 10190297
  12. Tobin DJ. Introduction to skin aging. J Tissue Viability 2017; 26(1): 37-46. doi: 10.1016/j.jtv.2016.03.002 PMID: 27020864
  13. Santamaria A. Historical overview of nanotechnology and nanotoxicology. Methods Mol Biol 2012; 926: 1-12. doi: 10.1007/978-1-62703-002-1_1 PMID: 22975953
  14. Mir SA, Hamid L, Bader GN, et al. Role of nanotechnology in overcoming the multidrug resistance in cancer therapy: A review. Molecules 2022; 27(19): 6608. doi: 10.3390/molecules27196608 PMID: 36235145
  15. Xue X, Liang XJ. Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology. Chin J Cancer 2012; 31(2): 100-9. doi: 10.5732/cjc.011.10326 PMID: 22237039
  16. Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res Lett 2021; 16(1): 173. doi: 10.1186/s11671-021-03628-6 PMID: 34866166
  17. Yadav N, Parveen S, Chakravarty S, Banerjee M. Skin anatomy and morphology Skin aging & cancer: Ambient UV-R exposure. Singapore: Springer Singapore 2019; pp. 1-10. doi: 10.1007/978-981-13-2541-0_1
  18. Sreeram S, Lobo FD, Naik R, Khadilkar UN, Kini H, Kini UA. Morphological spectrum of basal cell carcinoma in Southern Karnataka. J Clin Diagn Res 2016; 10(6): EC04-7. doi: 10.7860/JCDR/2016/17617.7959 PMID: 27504291
  19. Seidl-Philipp M, Frischhut N, Höllweger N, Schmuth M, Nguyen VA. Known and new facts on basal cell carcinoma. J Dtsch Dermatol Ges 2021; 19(7): 1021-41. doi: 10.1111/ddg.14580 PMID: 34288482
  20. Solano F. Photoprotection and skin pigmentation: Melanin-related molecules and some other new agents obtained from natural sources. Molecules 2020; 25(7): 1537. doi: 10.3390/molecules25071537 PMID: 32230973
  21. Ames BN, Gold LS. Endogenous mutagens and the causes of aging and cancer. Mutat Res 1991; 250(1-2): 3-16. doi: 10.1016/0027-5107(91)90157-J PMID: 1944345
  22. Fraga MF, Agrelo R, Esteller M. Cross-talk between aging and cancer: the epigenetic language. Ann N Y Acad Sci 2007; 1100(1): 60-74. doi: 10.1196/annals.1395.005 PMID: 17460165
  23. Urbach F, Ed. Environmental risk factors for skin cancer skin carcinogenesis in man and in experimental models. Berlin, Heidelberg: Springer Berlin Heidelberg 1993.
  24. Leffell DJ. The scientific basis of skin cancer. J Am Acad Dermatol 2000; 42(1): S18-22. doi: 10.1067/mjd.2000.103340 PMID: 10607352
  25. Walder B, Robertson M, Jeremy D. Skin cancer and immunosuppression. Lancet 1971; 298(7737): 1282-3. doi: 10.1016/S0140-6736(71)90602-7 PMID: 4143536
  26. Narendhirakannan RT, Hannah MAC. Oxidative stress and skin cancer: An overview. Indian J Clin Biochem 2013; 28(2): 110-5. doi: 10.1007/s12291-012-0278-8 PMID: 24426195
  27. Soehnge H, Ouhtit A, Ananthaswamy HN. Mechanisms of induction of skin cancer by UV radiation. Front Biosci 1997; 2: d538-51. doi: 10.2741/A211
  28. Didona D, Paolino G, Bottoni U, Cantisani C. Non melanoma skin cancer pathogenesis overview. Biomedicines 2018 Jan 2; 6(1): 6.
  29. Kashyap MP, Sinha R, Mukhtar MS, Athar M. Epigenetic regulation in the pathogenesis of non-melanoma skin cancer. Semin Cancer Biol 2022; 83: 36-56. doi: 10.1016/j.semcancer.2020.11.009 PMID: 33242578
  30. Bikle DD, Oda Y, Tu CL, Jiang Y. Novel mechanisms for the vitamin D receptor (VDR) in the skin and in skin cancer. J Steroid Biochem Mol Biol 2015; 148: 47-51. doi: 10.1016/j.jsbmb.2014.10.017 PMID: 25445917
  31. Burns EM, Yusuf N. Toll-like receptors and skin cancer. Front Immunol 2014; 5: 135. doi: 10.3389/fimmu.2014.00135 PMID: 24744758
  32. Uribe P, Gonzalez S. Epidermal growth factor receptor (EGFR) and squamous cell carcinoma of the skin: Molecular bases for EGFR-targeted therapy. Pathol Res Pract 2011; 207(6): 337-42. doi: 10.1016/j.prp.2011.03.002 PMID: 21531084
  33. Sárdy M. Role of matrix metalloproteinases in skin ageing. Connect Tissue Res 2009; 50(2): 132-8. doi: 10.1080/03008200802585622 PMID: 19296304
  34. Barsh GS. What controls variation in human skin color? PLoS Biol 2003; 1(1): e27. doi: 10.1371/journal.pbio.0000027 PMID: 14551921
  35. Farage MA, Miller KW, Elsner P, Maibach HI. Intrinsic and extrinsic factors in skin ageing: a review. Int J Cosmet Sci 2008; 30(2): 87-95. doi: 10.1111/j.1468-2494.2007.00415.x PMID: 18377617
  36. Armstrong BK, Kricker A. The epidemiology of UV induced skin cancer. J Photochem Photobiol B 2001; 63(1-3): 8-18. doi: 10.1016/S1011-1344(01)00198-1 PMID: 11684447
  37. Ghersetich I, Troiano M, De Giorgi V, Lotti T. Receptors in skin ageing and antiageing agents. Dermatol Clin 2007; 25(4): 655-62. xi. doi: 10.1016/j.det.2007.06.018 PMID: 17903624
  38. Rittié L, Fisher GJ. UV-light-induced signal cascades and skin aging. Ageing Res Rev 2002; 1(4): 705-20. doi: 10.1016/S1568-1637(02)00024-7 PMID: 12208239
  39. Giacomoni PU, Rein G. Factors of skin ageing share common mechanisms. Biogerontology 2001; 2(4): 219-29. doi: 10.1023/A:1013222629919 PMID: 11868897
  40. Chang KCN, Shen Q, Oh IG, et al. Liver X receptor is a therapeutic target for photoaging and chronological skin aging. Mol Endocrinol 2008; 22(11): 2407-19. doi: 10.1210/me.2008-0232 PMID: 18787039
  41. Alonso FT, Garmendia ML, Bogado M. Increased skin cancer mortality in Chile beyond the effect of ageing: Temporal analysis 1990 to 2005. Acta Derm Venereol 2010; 90(2): 141-6.
  42. Baumann L. Skin ageing and its treatment. J Pathol 2007; 211(2): 241-51. doi: 10.1002/path.2098 PMID: 17200942
  43. Quan T, He T, Kang S, Voorhees JJ, Fisher GJ. Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-β type II receptor/Smad signaling. Am J Pathol 2004; 165(3): 741-51. doi: 10.1016/S0002-9440(10)63337-8 PMID: 15331399
  44. Griffiths HBS, Williams C, King SJ, Allison SJ. Nicotinamide adenine dinucleotide (NAD+): essential redox metabolite, co-substrate and an anti-cancer and anti-ageing therapeutic target. Biochem Soc Trans 2020; 48(3): 733-44. doi: 10.1042/BST20190033 PMID: 32573651
  45. Gkogkolou P, Böhm M. Advanced glycation end products. Dermatoendocrinol 2012; 4(3): 259-70. doi: 10.4161/derm.22028 PMID: 23467327
  46. Coutts F, Palmos AB, Duarte RRR, et al. The polygenic nature of telomere length and the anti-ageing properties of lithium. Neuropsychopharmacology 2019; 44(4): 757-65. doi: 10.1038/s41386-018-0289-0 PMID: 30559463
  47. Lasry A, Ben-Neriah Y. Senescence-associated inflammatory responses: aging and cancer perspectives. Trends Immunol 2015; 36(4): 217-28. doi: 10.1016/j.it.2015.02.009 PMID: 25801910
  48. Pourhanifeh MH, Mahdavinia M, Reiter RJ, Asemi Z. Potential use of melatonin in skin cancer treatment: A review of current biological evidence. J Cell Physiol 2019; 234(8): 12142-8. doi: 10.1002/jcp.28129
  49. Hardeland R. Melatonin and the theories of aging: A critical appraisal of melatonin’s role in antiaging mechanisms. J Pineal Res 2013; 55(4): 325-56. doi: 10.1111/jpi.12090 PMID: 24112071
  50. Yang Y, Cheung HH, Zhang C, Wu J, Chan WY. Melatonin as potential targets for delaying ovarian aging. Curr Drug Targets 2018; 20(1): 16-28. doi: 10.2174/1389450119666180828144843 PMID: 30156157
  51. Miller LS. Toll-like receptors in skin. Adv Dermatol 2008; 24: 71-87. doi: 10.1016/j.yadr.2008.09.004 PMID: 19256306
  52. Ermertcan A, Öztürk F, Gündüz K. Toll-like receptors and skin. J Eur Acad Dermatol Venereol 2011; 25(9): 997-1006.
  53. Shaw AC, Panda A, Joshi SR, Qian F, Allore HG, Montgomery RR. Dysregulation of human toll-like receptor function in aging. Ageing Res Rev 2011; 10(3): 346-53. doi: 10.1016/j.arr.2010.10.007 PMID: 21074638
  54. Miller RL, Meng TC, Tomai MA. The antiviral activity of toll-like receptor 7 and 7/8 agonists. Drug News Perspect 2008; 21(2): 69-87. doi: 10.1358/dnp.2008.21.2.1188193 PMID: 18389099
  55. Conti V, Corbi G, Manzo V, Pelaia G, Filippelli A, Vatrella AJACP. Sirtuin 1 and aging theory for chronic obstructive pulmonary disease. Anal Cell Pathol 2015; 897327. doi: 10.1155/2015/897327
  56. Bielach-Bazyluk A, Zbroch E, Mysliwiec H, et al. Sirtuin 1 and skin: Implications in intrinsic and extrinsic aging - A systematic review. Cells 2021; 10(4): 813. doi: 10.3390/cells10040813 PMID: 33917352
  57. Kim E-J. SIRT1: Roles in aging and cancer. BMB Rep 2008; 41(11): 751-6.
  58. Ming M, Han W, Zhao B, et al. SIRT6 promotes COX-2 expression and acts as an oncogene in skin cancer. Cancer Res 2014; 74(20): 5925-33. doi: 10.1158/0008-5472.CAN-14-1308 PMID: 25320180
  59. Garcia-Peterson LM, Guzmán-Pérez G, Krier CR, Ahmad N. The sirtuin 6: An overture in skin cancer. Exp Dermatol 2020; 29(2): 124-35. doi: 10.1111/exd.14057 PMID: 31696978
  60. Rajagopalan R, Yakhmi JV. Nanotechnological approaches toward cancer chemotherapy. In: Ficai A, Grumezescu AM, Eds. Nanostructures for cancer therapy. Elsevier 2017; pp. 211-40.
  61. Zhang W, Hu X, Shen Q, Xing D. Mitochondria-specific drug release and reactive oxygen species burst induced by polyprodrug nanoreactors can enhance chemotherapy. Nat Commun 2019; 10(1): 1704. doi: 10.1038/s41467-019-09566-3 PMID: 30979885
  62. Muralikumar M, Manoj Jain S, Ganesan H, Duttaroy AK, Pathak S, Banerjee A. Current understanding of the mesenchymal stem cell-derived exosomes in cancer and aging. Biotechnol Rep 2021; 31: e00658. doi: 10.1016/j.btre.2021.e00658 PMID: 34377681
  63. Borowska S, Brzóska MM. Metals in cosmetics: Implications for human health. J Appl Toxicol 2015; 35(6): 551-72. doi: 10.1002/jat.3129 PMID: 25809475
  64. Arshad H, Mehmood MZ, Shah MH, Abbasi AM. Evaluation of heavy metals in cosmetic products and their health risk assessment. Saudi Pharm J 2020; 28(7): 779-90. doi: 10.1016/j.jsps.2020.05.006 PMID: 32647479
  65. Gladyshev VN, Kritchevsky SB, Clarke SG, et al. Molecular damage in aging. Nature Aging 2021; 1(12): 1096-106. doi: 10.1038/s43587-021-00150-3
  66. Rattan SIS. Anti-ageing strategies: Prevention or therapy? EMBO Rep 2005; 6(S1) (Suppl. 1): S25-9. doi: 10.1038/sj.embor.7400401 PMID: 15995657
  67. Soukas AA, Hao H, Wu L. Metformin as anti-aging therapy: Is it for everyone? Trends Endocrinol Metab 2019; 30(10): 745-55. doi: 10.1016/j.tem.2019.07.015 PMID: 31405774
  68. Gil P, Fariñas F, Casado A, López-Fernández E. Malondialdehyde: A possible marker of ageing. Gerontology 2002; 48(4): 209-14. doi: 10.1159/000058352 PMID: 12053109
  69. Cho S, Lee S, Lee M-J, Lee DH, Won C-H, Kim SM, et al. Dietary Aloe vera supplementation improves facial wrinkles and elasticity and it increases the type I procollagen gene expression in human skin in vivo. Ann Dermatol 2009; 21(1): 6-11. doi: 10.5021/ad.2009.21.1.6
  70. Hsin-Ti L, Wen-Sheng L, Yi-Chia W, et al. The effect in topical use of lycogen TM via sonophoresis for anti-aging on facial skin. Curr Pharm Biotechnol 2015; 16(12): 1063-9. doi: 10.2174/1389201016666150731112010 PMID: 26238679
  71. Basudkar V, Gharat SA, Momin MM, Shringarpure M. A review of anti-aging nanoformulations: Recent developments in excipients for nanocosmeceuticals and regulatory guidelines. Crit Rev Ther Drug Carrier Syst 2022; 39(3): 45-97. doi: 10.1615/CritRevTherDrugCarrierSyst.2021039544 PMID: 35381135
  72. Ganceviciene R, Liakou AI, Theodoridis A, Makrantonaki E, Zouboulis CC. Skin anti-aging strategies. Dermatoendocrinol 2012; 4(3): 308-19. doi: 10.4161/derm.22804 PMID: 23467476
  73. Pathak K, Akhtar N. Nose to brain delivery of nanoformulations for neurotherapeutics in parkinson’s disease: defining the preclinical, clinical and toxicity issues. Curr Drug Deliv 2016; 13(8): 1205-21. doi: 10.2174/1567201813666160607123409 PMID: 27280392
  74. Amer RI, Ezzat SM, Aborehab NM, et al. Downregulation of MMP1 expression mediates the anti-aging activity of Citrus sinensis peel extract nanoformulation in UV induced photoaging in mice. Biomed Pharmacother 2021; 138: 111537. doi: 10.1016/j.biopha.2021.111537 PMID: 34311535
  75. Souto EB, Müller RH, Gohla S. A novel approach based on lipid nanoparticles (SLN®) for topical delivery of α-lipoic acid. J Microencapsul 2005; 22(6): 581-92. doi: 10.1080/02652040500162378 PMID: 16401575
  76. Felippi CC, Oliveira D, Ströher A, et al. Safety and efficacy of antioxidants-loaded nanoparticles for an anti-aging application. J Biomed Nanotechnol 2012; 8(2): 316-21. doi: 10.1166/jbn.2012.1379 PMID: 22515083
  77. Pinsky MA. Efficacy and safety of an anti-aging technology for the treatment of facial wrinkles and skin moisturization. J Clin Aesthet Dermatol 2017; 10(12): 27-35.
  78. Ayunin Q, Miatmoko A, Soeratri W, Erawati T, Susanto J, Legowo D. Improving the anti-ageing activity of coenzyme Q10 through protransfersome-loaded emulgel. Sci Rep 2022; 12(1): 906. doi: 10.1038/s41598-021-04708-4 PMID: 35042910
  79. George J, Thabitha A, Vignesh N, et al. Antiskin cancer and antioxidant activities of formulated agar from brown seaweed Laminaria digitata (Hudson) in dimethyl benzanthracene-induced swiss albino mice. Int J Polym Sci 2021; 2021: 1-12. doi: 10.1155/2021/9930777
  80. Plianbangchang P, Tungpradit W, Tiyaboonchai WJNUJS. Efficacy and safety of curcuminoids loaded solid lipid nanoparticles facial cream as an anti-aging agent. (NUJST) 2013; 15(2): 73-81.
  81. Soleymani S, Iranpanah A, Najafi F, et al. Implications of grape extract and its nanoformulated bioactive agent resveratrol against skin disorders. Arch Dermatol Res 2019; 311(8): 577-88. doi: 10.1007/s00403-019-01930-z PMID: 31115657
  82. Pyo IS, Yun S, Yoon YE, Choi J-W, Lee SJJM. Mechanisms of aging and the preventive effects of resveratrol on age-related diseases. Molecules 2020; 25(20): 4649. doi: 10.3390/molecules25204649
  83. Vedamurthy M, Vedamurthy A, Nischal KC. Dermal fillers: Do's and Dont's. J Cutan Aesthet Surg 2010; 3(1): 11-5. doi: 10.4103/0974-2077.63221 PMID: 20606986
  84. Singh M, Wang S, Yee RW, Larin KV. Optical coherence tomography as a tool for real-time visual feedback and biomechanical assessment of dermal filler injections: preliminary results in a pig skin model. Exp Dermatol 2016; 25(6): 475-6. doi: 10.1111/exd.12983 PMID: 26910121
  85. La Gatta A, De Rosa M, Frezza MA, Catalano C, Meloni M, Schiraldi C. Biophysical and biological characterization of a new line of hyaluronan-based dermal fillers: A scientific rationale to specific clinical indications. Mater Sci Eng C 2016; 68: 565-72. doi: 10.1016/j.msec.2016.06.008 PMID: 27524055
  86. Sudha PN, Rose MH. Beneficial effects of hyaluronic acid. Adv Food Nutr Res 2014; 72: 137-76. doi: 10.1016/B978-0-12-800269-8.00009-9 PMID: 25081082
  87. Zhang JN, Chen BZ, Ashfaq M, Zhang XP, Guo XD. Development of a BDDE-crosslinked hyaluronic acid based microneedles patch as a dermal filler for anti-ageing treatment. J Ind Eng Chem 2018; 65: 363-9. doi: 10.1016/j.jiec.2018.05.007
  88. Girardeau-Hubert S, Teluob S, Pageon H, Asselineau D. The reconstructed skin model as a new tool for investigating in vitro dermal fillers: Increased fibroblast activity by hyaluronic acid. Eur J Dermatol 2015; 25(4): 312-22. doi: 10.1684/ejd.2015.2563 PMID: 26065380
  89. Shanbhag S, Nayak A, Narayan R, Nayak UY. Anti-aging and sunscreens: Paradigm shift in cosmetics. Adv Pharm Bull 2019; 9(3): 348-59. doi: 10.15171/apb.2019.042 PMID: 31592127
  90. Fan Y, Choi TH, Chung JH, Jeon YK, Kim S. Hyaluronic acid-cross-linked filler stimulates collagen type 1 and elastic fiber synthesis in skin through the TGF-β/Smad signaling pathway in a nude mouse model. J Plast Reconstr Aesthet Surg 2019; 72(8): 1355-62. doi: 10.1016/j.bjps.2019.03.032 PMID: 31036501
  91. Bukhari SNA, Roswandi NL, Waqas M, et al. Hyaluronic acid, a promising skin rejuvenating biomedicine: A review of recent updates and pre-clinical and clinical investigations on cosmetic and nutricosmetic effects. Int J Biol Macromol 2018; 120(Pt B): 1682-95. doi: 10.1016/j.ijbiomac.2018.09.188 PMID: 30287361
  92. Wollina U, Goldman A, Tchernev G. Fillers and facial fat pads. Open Access Maced J Med Sci 2017; 5(4): 403-8. doi: 10.3889/oamjms.2017.117 PMID: 28785319
  93. Chan GKL, Guo MS, Dai DK, et al. An optimized extract, named self-growth colony, from platelet-rich plasma shows robust skin rejuvenation and anti-ageing properties: A novel technology in development of cosmetics. Skin Pharmacol Physiol 2021; 34(2): 74-85. doi: 10.1159/000513052 PMID: 33556953
  94. Maia RR, da Silva Valentim RM, Meyer PF, et al. A study of intradermotherapy with needles in facial rejuvenation. J Aesth Nurs 2021; 10(7): 294-301. doi: 10.12968/joan.2021.10.7.294
  95. Meyer-Rogge D, Rosken F, Holzschuh P, D’hont B. Kruglikov Ilja. Facial skin rejuvenation with high frequency ultrasound: Multicentre study of dual-frequency ultrasound. J Cosm Dermatol Appl 2012; 2(2): 68-73. doi: 10.4236/jcdsa.2012.22016
  96. Marnewick J, Joubert E, Joseph S, Swanevelder S, Swart P, Gelderblom W. Inhibition of tumour promotion in mouse skin by extracts of rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia), unique South African herbal teas. Cancer Lett 2005; 224(2): 193-202. doi: 10.1016/j.canlet.2004.11.014 PMID: 15914270
  97. Avadhani KS, Manikkath J, Tiwari M, et al. Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage. Drug Deliv 2017; 24(1): 61-74. doi: 10.1080/10717544.2016.1228718 PMID: 28155509
  98. Kapoor VK, Dureja J, Chadha R. Synthetic drugs with anti-ageing effects. Drug Discov Today 2009; 14(17-18): 899-904. doi: 10.1016/j.drudis.2009.07.006 PMID: 19638318
  99. Li J, Zeng X, Yang X, Ding H. Lycopene ameliorates skin aging by regulating the insulin resistance pathway and activating SIRT1. Food Funct 2022; 13(21): 11307-20. doi: 10.1039/D2FO01111E PMID: 36226790
  100. Ratz-Łyko A, Arct J. Resveratrol as an active ingredient for cosmetic and dermatological applications: A review. J Cosmet Laser Ther 2019; 21(2): 84-90. doi: 10.1080/14764172.2018.1469767
  101. Stancu AL. AMPK activation can delay aging. Discoveries 2015; 3(4): e53. doi: 10.15190/d.2015.45 PMID: 32309575
  102. Blagosklonny MV. Rapalogs in cancer prevention. Cancer Biol Ther 2012; 13(14): 1349-54. doi: 10.4161/cbt.22859 PMID: 23151465
  103. Fang Z, Li J, Wang K, He T, Wang H, Xie S, et al. Autologous scar-related tissue combined with skin grafting for reconstructing large area burn scar. J Invest Surg 2022; 35(10): 1779-88. doi: 10.1080/08941939.2022.2101164
  104. Shakeel F, Ramadan W. Transdermal delivery of anticancer drug caffeine from water-in-oil nanoemulsions. Colloids Surf B Biointerfaces 2010; 75(1): 356-62. doi: 10.1016/j.colsurfb.2009.09.010 PMID: 19783127
  105. Chang L, Weiner LS, Hartman SJ, et al. Breast cancer treatment and its effects on aging. J Geriatr Oncol 2019; 10(2): 346-55. doi: 10.1016/j.jgo.2018.07.010 PMID: 30078714
  106. Moro L. Mitochondrial dysfunction in aging and cancer. J Clin Med 2019; 8(11): 1983.
  107. Han F, Luo D, Qu W, et al. Nanoliposomes codelivering bioactive peptides produce enhanced anti-aging effect in human skin. J Drug Deliv Sci Technol 2020; 57: 101693. doi: 10.1016/j.jddst.2020.101693
  108. Ahlina FN, Nugraheni N, Salsabila IA, Haryanti S, Da’i M, Meiyanto E. Revealing the reversal effect of galangal (Alpinia galanga L.) extract against oxidative stress in metastatic breast cancer cells and normal fibroblast cells intended as a co-chemotherapeutic and anti-ageing agent. Asian Pac J Cancer Prev 2020; 21(1): 107-17. doi: 10.31557/APJCP.2020.21.1.107 PMID: 31983172
  109. Wu Y, Gan D, Leng X. He W, Zhang X, Li C, Gu X, Hu Y, Du S, Han Y. Anti-ageing and anti-lung carcinoma effects of vulpinic acid and usnic acid compounds and biological investigations with molecular modeling study. J Oleo Sci 2022; 71(2): 247-55.
  110. Solis MJE. Why the use of anti-ageing drugs could delay the development of chronic diseases? Pharm J 2020; 296(7886)
  111. Yokoyama NN, Denmon AP, Uchio EM, Jordan M, Mercola D, Zi X. When anti-aging studies meet cancer chemoprevention: Can anti-aging agent kill two birds with one blow? Curr Pharmacol Rep 2015; 1(6): 420-33. doi: 10.1007/s40495-015-0039-5 PMID: 26756023
  112. Wei R, Mao L, Xu P, et al. Suppressing glucose metabolism with epigallocatechin-3-gallate (EGCG) reduces breast cancer cell growth in preclinical models. Food Funct 2018; 9(11): 5682-96. doi: 10.1039/C8FO01397G PMID: 30310905
  113. Salaheldin TA, Adhami VM, Fujioka K, Mukhtar H, Mousa SA. Photochemoprevention of ultraviolet beam radiation-induced DNA damage in keratinocytes by topical delivery of nanoformulated Epigallocatechin-3-gallate. Nanomedicine 2022; 44: 102580. doi: 10.1016/j.nano.2022.102580 PMID: 35768037
  114. Sturm RA, Duffy DL, Box NF, et al. The role of melanocortin-1 receptor polymorphism in skin cancer risk phenotypes. Pigment Cell Res 2003; 16(3): 266-72. doi: 10.1034/j.1600-0749.2003.00041.x PMID: 12753400
  115. Lind MH, Rozell B, Wallin RPA, Hogerlinden Mv, Ljunggren HG, Toftgård R, et al. Tumor necrosis factor receptor 1-mediated signaling is required for skin cancer development induced by NF-kappaB inhibition. Proc Natl Acad Sci 2004; 101(14): 4972-7. doi: 10.1073/pnas.0307106101
  116. Basile J, Thiers B, Maize J Sr, Lathers DMR. Chemokine receptor expression in non-melanoma skin cancer. J Cutan Pathol 2008; 35(7): 623-9. doi: 10.1111/j.1600-0560.2007.00879.x PMID: 18312436
  117. Bocheva G, Rattenholl A, Kempkes C, et al. Role of matriptase and proteinase-activated receptor-2 in nonmelanoma skin cancer. J Invest Dermatol 2009; 129(7): 1816-23. doi: 10.1038/jid.2008.449 PMID: 19242518
  118. Montagner A, Delgado MB, Tallichet-Blanc C, Chan JSK, Sng MK, Mottaz H, et al. Src is activated by the nuclear receptor peroxisome proliferator-activated receptor β/δ in ultraviolet radiation-induced skin cancer. EMBO Mol Med 2014; 6(1): 80-98. doi: 10.1002/emmm.201302666
  119. Rundhaug JE, Simper MS, Surh I, Fischer SM. The role of the EP receptors for prostaglandin E2 in skin and skin cancer. Cancer Metastasis Rev 2011; 30(3-4): 465-80. doi: 10.1007/s10555-011-9317-9 PMID: 22012553
  120. Hidaka T, Fujimura T, Aiba S. Aryl hydrocarbon receptor modulates carcinogenesis and maintenance of skin cancers. Front Med 2019; 6: 194. doi: 10.3389/fmed.2019.00194 PMID: 31552251
  121. Bermudez Y, Benavente CA, Meyer RG, Coyle WR, Jacobson MK, Jacobson EL. Nicotinic acid receptor abnormalities in human skin cancer: implications for a role in epidermal differentiation. PLoS One 2011; 6(5): e20487. doi: 10.1371/journal.pone.0020487 PMID: 21655214
  122. Greig AVH, Burnstock G, Linge C, et al. Expression of purinergic receptors in non-melanoma skin cancers and their functional roles in A431 cells. J Invest Dermatol 2003; 121(2): 315-27. doi: 10.1046/j.1523-1747.2003.12379.x PMID: 12880424
  123. Fujita M, Andoh T, Ohashi K, Akira A, Saiki I, Kuraishi Y. Roles of kinin B 1 and B 2 receptors in skin cancer pain produced by orthotopic melanoma inoculation in mice. Eur J Pain 2010; 14(6): 588-94. doi: 10.1016/j.ejpain.2009.10.010 PMID: 19932979
  124. Lee JL, Kim A, Kopelovich L, Bickers DR, Athar M. Differential expression of E prostanoid receptors in murine and human non-melanoma skin cancer. J Invest Dermatol 2005; 125(4): 818-25. doi: 10.1111/j.0022-202X.2005.23829.x PMID: 16185283
  125. Hafner C, Becker B, Landthaler M, Vogt T. Expression profile of Eph receptors and ephrin ligands in human skin and downregulation of EphA1 in nonmelanoma skin cancer. Mod Pathol 2006; 19(10): 1369-77. doi: 10.1038/modpathol.3800660 PMID: 16862074
  126. Fogarty GB, Conus NM, Chu J, McArthur G. Characterization of the expression and activation of the epidermal growth factor receptor in squamous cell carcinoma of the skin. Br J Dermatol 2007; 56(1): 92-8. doi: 10.1111/j.1365-2133.2006.07603.x
  127. Li WH, Lee YM, Kim JY, et al. Transient receptor potential vanilloid-1 mediates heat-shock-induced matrix metalloproteinase-1 expression in human epidermal keratinocytes. J Invest Dermatol 2007; 127(10): 2328-35. doi: 10.1038/sj.jid.5700880 PMID: 17508023
  128. Fisher GJ, Datta SC, Talwar HS, et al. Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature 1996; 379(6563): 335-9. doi: 10.1038/379335a0 PMID: 8552187
  129. Thornton J, Thornton J. Effect of estrogens on skin aging and the potential role of SERMs. Clin Interv Aging 2007; 2(3): 283-97. doi: 10.2147/CIA.S798 PMID: 18044179
  130. Pilkington SM, Ogden S, Eaton LH, Dearman RJ, Kimber I, Griffiths CEM. Lower levels of interleukin-1 β gene expression are associated with impaired Langerhans’ cell migration in aged human skin. Immunology 2018; 153(1): 60-70. doi: 10.1111/imm.12810 PMID: 28777886
  131. Sun J, Liu X, Shen C, Zhang W, Niu Y. Adiponectin receptor agonist AdipoRon blocks skin inflamm-ageing by regulating mitochondrial dynamics. Cell Prolif 2021; 54(12): e13155. doi: 10.1111/cpr.13155 PMID: 34725875
  132. du Plessis J, Chinembiri TN, Gerber M, du Plessis LH, du Preez JL, Hamman JH. Topical delivery of Withania somnifera crude extracts in niosomes and solid lipid nanoparticles. Pharmacogn Mag 2017; 13(51) (Suppl. 3): 663. doi: 10.4103/pm.pm_489_16 PMID: 29142430
  133. Geetha T, Kapila M, Prakash O, Deol PK, Kakkar V, Kaur IP. Sesamol-loaded solid lipid nanoparticles for treatment of skin cancer. J Drug Target 2015; 23(2): 159-69. doi: 10.3109/1061186X.2014.965717 PMID: 25268273
  134. Huang X, Dai Y, Cai J, et al. Resveratrol encapsulation in core-shell biopolymer nanoparticles: Impact on antioxidant and anticancer activities. Food Hydrocoll 2017; 64: 157-65. doi: 10.1016/j.foodhyd.2016.10.029
  135. Salem MA, Manaa EG, Osama N, et al. Coriander (Coriandrum sativum L.) essential oil and oil-loaded nano-formulations as an anti-aging potentiality via TGFβ/SMAD pathway. Sci Rep 2022; 12(1): 6578. doi: 10.1038/s41598-022-10494-4 PMID: 35449437
  136. Plyduang T, Atipairin A, Sae Yoon A, Sermkaew N, Sakdiset P, Sawatdee S. Formula development of red palm (Elaeis guineensis) fruit extract loaded with solid lipid nanoparticles containing creams and its anti-aging efficacy in healthy volunteers. Cosmetics 2022 Feb; 9(1): 3.
  137. Montenegro L, Parenti C, Turnaturi R, Pasquinucci L. Resveratrol-loaded lipid nanocarriers: Correlation between in vitro occlusion factor and in vivo skin hydrating effect. Pharmaceutics 2017; 9(4): 58.
  138. Avadhani KS, Amirthalingam M, Reddy MS, Udupa N, Mutalik SJR. Development and validation of RP-HPLC method for estimation of epigallocatechin-3-gallate (EGCG) in lipid based nanoformulations. Res J Pharm Tech 2016; 9(6): 725.
  139. El-Sheridy NA, El-Moslemany RM, Ramadan AA, Helmy MW, El-Khordagui LK. Itraconazole for topical treatment of skin carcinogenesis: Efficacy enhancement by lipid nanocapsule formulations. J Biomed Nanotechnol 2022; 18(1): 97-111. doi: 10.1166/jbn.2022.3217 PMID: 35180903
  140. Kurangi B, Jalalpure S, Jagwani S. Formulation and evaluation of resveratrol loaded cubosomal nanoformulation for topical delivery. Curr Drug Deliv 2021; 18(5): 607-19. doi: 10.2174/1567201817666200902150646 PMID: 32881670

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers