Pre-operative Neo-adjuvant Chemotherapy Related miRNAs as Key Regulators and Therapeutic Targets in Colorectal Cancer


Cite item

Full Text

Abstract

Background:In colorectal cancer, the investigation of cancer pathogenesis and the determination of the relevant gene and gene pathways is particularly important to provide a basis for treatment-oriented studies. miRNAs which affect gene regulation in the molecular pathogenesis of cancer, have an active role in carcinogenesis. In the literature, miRNA expression levels have been associated with metastasis and prognosis in different cancers.

Objective:In our study, expression profiling of miRNAs involved in oncogenic and apoptotic pathways in patients with locally advanced colorectal cancer receiving neoadjuvant therapy was performed.

Methods:miRNAs were isolated from three different FFPE tissue samples taken at different times of the same patient (tumor tissue taken at the time of diagnosis, normal tissue samples, and after neoadjuvant therapy). The expression analysis of 84 miRNAs determined by PCR array (Fluidigm, USA) and mediated meta-analysis was performed comparatively to each study and non-cancerous control group. Evaluations were performed with ΔΔCT calculations.

Results:As a result of the miRNA PCR array study, in addition to differences were observed in miRNA expression between control and study groups. The potential biomarkers which were hsamiR- 215-5p, hsa-miR-9-59, hsa-miR-193a-5p, hsa-miR-206, hsa-miR-1, hsa-miR-96-5p have been detected for possible treatment resistance, prognosis and predispositions to cancers.

Conclusion:In patients with colorectal cancer, miRNA expression in the tumoral regions before and after neoadjuvant therapy has represented a variable pattern. It has been shown that miRNA studies can be used to predict the clinical course and response to treatment with differences in expression levels. It has been concluded that specific miRNAs may be candidate biomarkers for colorectal cancer.

About the authors

Orcun Yalav

Department of General Surgery, Faculty of Medicine, Cukurova University

Email: info@benthamscience.net

Ozge Sonmezler

AGENTEM (Adana Genetic Diseases Diagnosis and Treatment Center), Cukurova University

Email: info@benthamscience.net

Kivilcim Erdogan

Department of Pathology, Faculty of Medicine, Cukurova University Institute of Natural and Applied Sciences

Email: info@benthamscience.net

Ahmet Rencuzogullari

Department of General Surgery, Faculty of Medicine, Cukurova University

Email: info@benthamscience.net

Figen Doran

Department of Pathology, Faculty of Medicine, Cukurova University Institute of Natural and Applied Sciences

Email: info@benthamscience.net

Atil Bisgin

Department of Medical Genetics, Faculty of Medicine, Cukurova University AGENTEM (Adana Genetic Diseases Diagnosis and Treatment Center) & Cukurova University

Author for correspondence.
Email: info@benthamscience.net

Ibrahim Boga

AGENTEM (Adana Genetic Diseases Diagnosis and Treatment Center), Cukurova University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol 2021; 14(10): 101174. doi: 10.1016/j.tranon.2021.101174 PMID: 34243011
  2. Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz Gastroenterol 2019; 14(2): 89-103. doi: 10.5114/pg.2018.81072 PMID: 31616522
  3. Babaei M, Jansen L, Balavarca Y, et al. Neoadjuvant therapy in rectal cancer patients with clinical stage II to III across european countries: Variations and outcomes. Clin Colorectal Cancer 2018; 17(1): e129-42. doi: 10.1016/j.clcc.2017.09.002 PMID: 29074354
  4. Benson AB, Venook AP, Al-Hawary MM, et al. NCCN guidelines insights: Rectal cancer, version 6, 2020. J Natl Compr Canc Netw 2020; 18(7): 806-15. doi: 10.6004/jnccn.2020.0032 PMID: 32634771
  5. Thomas J, Ohtsuka M, Pichler M, Ling H. MicroRNAs: Clinical relevance in colorectal cancer. Int J Mol Sci 2015; 16(12): 28063-76. doi: 10.3390/ijms161226080 PMID: 26602923
  6. Body A, Prenen H, Lam M, et al. Neoadjuvant therapy for locally advanced rectal cancer: Recent advances and ongoing challenges. Clin Colorectal Cancer 2021; 20(1): 29-41. doi: 10.1016/j.clcc.2020.12.005 PMID: 33531256
  7. Wilkinson N. Management of rectal cancer. Surg Clin North Am 2020; 100(3): 615-28. doi: 10.1016/j.suc.2020.02.014 PMID: 32402304
  8. Imedio L, Cristóbal I, Rubio J, Santos A, Rojo F, García-Foncillas J. MicroRNAs in rectal cancer: Functional significance and promising therapeutic value. Cancers 2020; 12(8): 2040. doi: 10.3390/cancers12082040 PMID: 32722203
  9. Bartel DP. MicroRNAs. Cell 2004; 116(2): 281-97. doi: 10.1016/S0092-8674(04)00045-5 PMID: 14744438
  10. Gao S, Zhao ZY, Wu R, Zhang Y, Zhang ZY. Prognostic value of microRNAs in colorectal cancer: A meta-analysis. Cancer Manag Res 2018; 10: 907-29. doi: 10.2147/CMAR.S157493 PMID: 29750053
  11. Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 2015; 15(6): 321-33. doi: 10.1038/nrc3932 PMID: 25998712
  12. Aslam MI, Taylor K, Pringle JH, Jameson JS. MicroRNAs are novel biomarkers of colorectal cancer. Br J Surg 2009; 96(7): 702-10. doi: 10.1002/bjs.6628 PMID: 19526617
  13. Yau TO, Wu CW, Tang CM, et al. microRNA-20a in human faeces as a non-invasive biomarker for colorectal cancer. Oncotarget 2016; 7(2): 1559-68. doi: 10.18632/oncotarget.6403 PMID: 26621842
  14. Michael MZ, O’ Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 2003; 1(12): 882-91. PMID: 14573789
  15. Zhu J, Xu Y, Liu S, Qiao L, Sun J, Zhao Q. MicroRNAs associated with colon cancer: New potential prognostic markers and targets for therapy. Front Bioeng Biotechnol 2020; 8: 176. doi: 10.3389/fbioe.2020.00176 PMID: 32211396
  16. Zhang N, Hu X, Du Y, Du J. The role of miRNAs in colorectal cancer progression and chemoradiotherapy. Biomed Pharmacother 2021; 134: 111099. doi: 10.1016/j.biopha.2020.111099 PMID: 33338745
  17. Plotnikova O, Baranova A, Skoblov M. Comprehensive analysis of human microRNA-mRNA interactome. Front Genet 2019; 10: 933. doi: 10.3389/fgene.2019.00933 PMID: 31649721
  18. Smith RA, Cokkinides V, von Eschenbach AC, et al. American Cancer Society guidelines for the early detection of cancer. CA Cancer J Clin 2002; 52(1): 8-22. doi: 10.3322/canjclin.52.1.8 PMID: 11814067
  19. Pedroza-Torres A, Romero-Córdoba SL, Justo-Garrido M, et al. MicroRNAs in tumor cell metabolism: Roles and therapeutic opportunities. Front Oncol 2019; 9: 1404. doi: 10.3389/fonc.2019.01404 PMID: 31921661
  20. Wang H, Ma N, Li W, Wang Z. MicroRNA-96-5p promotes proliferation, invasion and EMT of oral carcinoma cells by directly targeting FOXF2. Biol Open 2020; 9(3): bio049478. doi: 10.1242/bio.049478 PMID: 32014885
  21. Iwai N, Yasui K, Tomie A, et al. Oncogenic miR-96-5p inhibits apoptosis by targeting the caspase-9 gene in hepatocellular carcinoma. Int J Oncol 2018; 53(1): 237-45. PMID: 29658604
  22. Qin W, Feng S, Sun Y, Jiang G. MiR-96-5p promotes breast cancer migration by activating MEK/ERK signaling. J Gene Med 2020; 22(8): e3188. doi: 10.1002/jgm.3188 PMID: 32196830
  23. Liu B, Zhang J, Yang D. miR-96-5p promotes the proliferation and migration of ovarian cancer cells by suppressing Caveolae1. J Ovarian Res 2019; 12(1): 57. doi: 10.1186/s13048-019-0533-1 PMID: 31228941
  24. Ress AL, Stiegelbauer V, Winter E, et al. MiR-96-5p influences cellular growth and is associated with poor survival in colorectal cancer patients. Mol Carcinog 2015; 54(11): 1442-50. doi: 10.1002/mc.22218 PMID: 25256312
  25. Vychytilova-Faltejskova P, Merhautova J, Machackova T, et al. MiR-215-5p is a tumor suppressor in colorectal cancer targeting EGFR ligand epiregulin and its transcriptional inducer HOXB9. Oncogenesis 2017; 6(11): 399. doi: 10.1038/s41389-017-0006-6 PMID: 29199273
  26. Machackova T, Vychytilova-Faltejskova P, Souckova K, et al. MiR-215-5p reduces liver metastasis in an experimental model of colorectal cancer through regulation of ECM-receptor interactions and focal adhesion. Cancers 2020; 12(12): 3518. doi: 10.3390/cancers12123518 PMID: 33255928
  27. Chen L, Hu W, Li G, Guo Y, Wan Z, Yu J. Inhibition of miR-9-5p suppresses prostate cancer progress by targeting StarD13. Cell Mol Biol Lett 2019; 24(1): 20. doi: 10.1186/s11658-019-0145-1 PMID: 30899277
  28. Wang J, Wang B, Ren H, Chen W. miR-9-5p inhibits pancreatic cancer cell proliferation, invasion and glutamine metabolism by targeting GOT1. Biochem Biophys Res Commun 2019; 509(1): 241-8. doi: 10.1016/j.bbrc.2018.12.114 PMID: 30591220
  29. Li G, Wu F, Yang H, Deng X, Yuan Y. MiR-9-5p promotes cell growth and metastasis in non-small cell lung cancer through the repression of TGFBR2. Biomed Pharmacother 2017; 96: 1170-8. doi: 10.1016/j.biopha.2017.11.105 PMID: 29239816
  30. Zhang P, Ji D-B, Han H-B, Shi Y-F, Du C-Z, Gu J. Downregulation of miR-193a-5p correlates with lymph node metastasis and poor prognosis in colorectal cancer. World J Gastroenterol 2014; 20(34): 12241-8. doi: 10.3748/wjg.v20.i34.12241 PMID: 25232258
  31. Yang Z, Chen JS, Wen JK, et al. Silencing of miR-193a-5p increases the chemosensitivity of prostate cancer cells to docetaxel. J Exp Clin Cancer Res 2017; 36(1): 178. doi: 10.1186/s13046-017-0649-3 PMID: 29216925
  32. Pu Y, Zhao F, Cai W, Meng X, Li Y, Cai S. MiR-193a-3p and miR-193a-5p suppress the metastasis of human osteosarcoma cells by down-regulating Rab27B and SRR, respectively. Clin Exp Metastasis 2016; 33(4): 359-72. doi: 10.1007/s10585-016-9783-0 PMID: 26913720
  33. Li P, Xiao Z, Luo J, Zhang Y, Lin L. MiR-139-5p, miR-940 and miR-193a-5p inhibit the growth of hepatocellular carcinoma by targeting SPOCK1. J Cell Mol Med 2019; 23(4): 2475-88. doi: 10.1111/jcmm.14121 PMID: 30710422
  34. Taniguchi K, Sakai M, Sugito N, et al. PTBP1-associated microRNA-1 and -133b suppress the Warburg effect in colorectal tumors. Oncotarget 2016; 7(14): 18940-52. doi: 10.18632/oncotarget.8005 PMID: 26980745
  35. Han C, Shen JK, Hornicek FJ, Kan Q, Duan Z. Regulation of microRNA-1 (miR-1) expression in human cancer. Biochim Biophys Acta Gene Regul Mech 2017; 1860(2): 227-32. doi: 10.1016/j.bbagrm.2016.12.004 PMID: 27923712

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers