Autophagy Behavior in Endothelial Cell Regeneration


Cite item

Full Text

Abstract

Autophagy plays a crucial role in maintaining endothelial cell homeostasis through the turnover of intracellular components during stress conditions in a lysosomal-dependent manner. The regeneration strategy involves several aspects, including autophagy. Autophagy is a catabolic degenerative lysosomal-dependent degradation of intracellular components. Autophagy modifies cellular and subcellular endothelial cell functions, including mitochondria stress, lysosomal stress, and endoplasmic reticulum unfolded protein response. Activation of common signaling pathways of autophagy and regeneration and enhancement of intracellular endothelial cell metabolism serve as the bases for the induction of endothelial regeneration. Endothelial progenitor cells include induced pluripotent stem cells (iPSC), embryonic stem cells, and somatic cells, such as fibroblasts. Future strategies of endothelial cell regeneration involve the induction of autophagy to minimize the metabolic degeneration of the endothelial cells and optimize the regeneration outcomes.

About the authors

Basheer Marzoog

World-Class Research Center «Digital Biodesign and Personalized Healthcare», Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: info@benthamscience.net

References

  1. Sedwick C. Yoshinori Ohsumi: Autophagy from beginning to end. J Cell Biol 2012; 197(2): 164-5. doi: 10.1083/jcb.1972pi PMID: 22508506
  2. Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 2018; 25(3): 486-541. doi: 10.1038/s41418-017-0012-4 PMID: 29362479
  3. Kroemer G, Galluzzi L, Vandenabeele P, et al. Classification of cell death: Recommendations of the nomenclature committee on cell death 2009. Cell Death Differ 2009; 16(1): 3-11. doi: 10.1038/cdd.2008.150 PMID: 18846107
  4. Vion AC, Kheloufi M, Hammoutene A, et al. Autophagy is required for endothelial cell alignment and atheroprotection under physiological blood flow Proc Natl Acad Sci USA 2017; 114(41): E8675-84. doi: 10.1073/pnas.1702223114 PMID: 28973855
  5. Joffre J, Hellman J, Ince C, Ait-Oufella H. Endothelial responses in sepsis. Am J Respir Crit Care Med 2020; 202(3): 361-70. doi: 10.1164/rccm.201910-1911TR PMID: 32101446
  6. Paone S, Baxter AA, Hulett MD, Poon IKH. Endothelial cell apoptosis and the role of endothelial cell-derived extracellular vesicles in the progression of atherosclerosis. Cell Mol Life Sci 2019; 76(6): 1093-106. doi: 10.1007/s00018-018-2983-9 PMID: 30569278
  7. Morris G, Puri BK, Olive L, Carvalho A, Berk M, Walder K. Endothelial dysfunction in neuroprogressive disorders—causes and suggested treatments. BMC Med 2020; 18(1): 1-31.
  8. Yao Y, Song Q, Hu C, et al. Endothelial cell metabolic memory causes cardiovascular dysfunction in diabetes. Cardiovasc Res 2022; 118(1): 196-211. doi: 10.1093/cvr/cvab013 PMID: 33483741
  9. Marzoog BA, Vasyileva O. Manifestations of COVID-19 in anterior eye segment; up-to-date. Saudi J Ophthalmol 2022.
  10. Marzoog BA. Tree of life: Endothelial cell in norm and disease, the good guy is a partner in crime! Anat Cell Biol 2023; 56(2): 166-78. doi: 10.5115/acb.22.190 PMID: 36879408
  11. Marzoog BA. Systemic and local hypothermia in the context of cell regeneration. Cryo Lett 2022; 43(2): 66-73. doi: 10.54680/fr22210110112 PMID: 36626147
  12. Marzoog BA, Vlasova TI. Membrane lipids under norm and pathology. Eur J Clin Exp Med 2021; 19(1): 59-75. doi: 10.15584/ejcem.2021.1.9
  13. Marzoog B. Lipid behavior in metabolic syndrome pathophysiology. Curr Diabetes Rev 2022; 18(6): e150921196497. doi: 10.2174/1573399817666210915101321 PMID: 34525924
  14. Marzoog BA. The metabolic syndrome puzzles; possible pathogenesis and management. Curr Diabetes Rev 2023; 19(4): e290422204258. doi: 10.2174/1573399818666220429100411 PMID: 35507784
  15. Marzoog BA. Recent advances in molecular biology of metabolic syndrome pathophysiology: Endothelial dysfunction as a potential therapeutic target. J Diabetes Metab Disord 2022; 21(2): 1903-11. doi: 10.1007/s40200-022-01088-y PMID: 36065330
  16. Abdullah Marzoog B. Autophagy as an anti-senescent in aging neurocytes. Curr Mol Med 2024; 24(2): 182-90. doi: 10.2174/1566524023666230120102718 PMID: 36683318
  17. Abdullah MB. Autophagy behavior under local hypothermia in myocardiocytes injury. Cardiovasc Hematol Agents Med Chem 2023; 21. doi: 10.2174/1871525721666230803102554 PMID: 37534483
  18. Bierhansl L, Conradi LC, Treps L, Dewerchin M, Carmeliet P. Central role of metabolism in endothelial cell function and vascular disease. Physiology 2017; 32(2): 126-40. doi: 10.1152/physiol.00031.2016 PMID: 28202623
  19. Khan S, Taverna F, Rohlenova K, et al. EndoDB: A database of endothelial cell transcriptomics data. Nucleic Acids Res 2019; 47(D1): D736-44. doi: 10.1093/nar/gky997 PMID: 30357379
  20. Rajendran P, Rengarajan T, Thangavel J, et al. The vascular endothelium and human diseases. Int J Biol Sci 2013; 9(10): 1057-69. doi: 10.7150/ijbs.7502 PMID: 24250251
  21. Wang S, Aurora AB, Johnson BA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 2008; 15(2): 261-71. doi: 10.1016/j.devcel.2008.07.002 PMID: 18694565
  22. Marzoog BA, Vlasova TI. Transcription factors in deriving β cell regeneration: A potential novel therapeutic target. Curr Mol Med 2022; 22(5): 421-30. doi: 10.2174/1566524021666210712144638 PMID: 34931980
  23. Marzoog BA. Transcription factors - the essence of heart regeneration: A potential novel therapeutic strategy. Curr Mol Med 2023; 23(3): 232-8. doi: 10.2174/1566524022666220216123650 PMID: 35170408
  24. Matsuzaki T, Alvarez-Garcia O, Mokuda S, et al. FoxO transcription factors modulate autophagy and proteoglycan 4 in cartilage homeostasis and osteoarthritis. Sci Transl Med 2018; 10(428): eaan0746. doi: 10.1126/scitranslmed.aan0746 PMID: 29444976
  25. Marzoog BA, Vlasova TI. Myocardiocyte autophagy in the context of myocardiocytes regeneration: A potential novel therapeutic strategy. Egypt J Med Hum Genet 2022; 23(1): 41. doi: 10.1186/s43042-022-00250-8
  26. Marzoog BA, Vlasova TI. Beta-cell autophagy under the scope of hypoglycemic drugs; possible mechanism as a novel therapeutic target. Obes Metab 2022; 18(4): 465-70. doi: 10.14341/omet12778
  27. Liu J, Bi X, Chen T, et al. Shear stress regulates endothelial cell autophagy via redox regulation and Sirt1 expression. Cell Death Dis 2015; 6(7): e1827. doi: 10.1038/cddis.2015.193 PMID: 26181207
  28. Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, Gremse F, Grommes J. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med 2014; 20(4): 368-76.
  29. Jansen F, Yang X, Hoelscher M, et al. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation 2013; 128(18): 2026-38. doi: 10.1161/CIRCULATIONAHA.113.001720 PMID: 24014835
  30. Masoud AG, Lin J, Azad AK, et al. Apelin directs endothelial cell differentiation and vascular repair following immune-mediated injury. J Clin Invest 2019; 130(1): 94-107. doi: 10.1172/JCI128469 PMID: 31738185
  31. Xia W, Yin J, Zhang S, et al. Parkin modulates ERRα/eNOS signaling pathway in endothelial cells. Cell Physiol Biochem 2018; 49(5): 2022-34. doi: 10.1159/000493713 PMID: 30244249
  32. Cuervo AM, Wong E. Chaperone-mediated autophagy: Roles in disease and aging. Cell Res 2014; 24(1): 92-104. doi: 10.1038/cr.2013.153 PMID: 24281265
  33. Suzuki K, Ohsumi Y. Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett 2007; 581(11): 2156-61. doi: 10.1016/j.febslet.2007.01.096 PMID: 17382324
  34. Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 2018; 19(6): 349-64. doi: 10.1038/s41580-018-0003-4 PMID: 29618831
  35. Gatica D, Chiong M, Lavandero S, Klionsky DJ. Molecular mechanisms of autophagy in the cardiovascular system. Circ Res 2015; 116(3): 456-67. doi: 10.1161/CIRCRESAHA.114.303788 PMID: 25634969
  36. Ravikumar B, Sarkar S, Davies JE, et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 2010; 90(4): 1383-435. doi: 10.1152/physrev.00030.2009 PMID: 20959619
  37. Di Malta C, Cinque L, Settembre C. Transcriptional regulation of autophagy: Mechanisms and diseases. Front Cell Dev Biol 2019; 7: 114. doi: 10.3389/fcell.2019.00114 PMID: 31312633
  38. Hale AN, Ledbetter DJ, Gawriluk TR, Rucker EB III. Autophagy. Autophagy 2013; 9(7): 951-72. doi: 10.4161/auto.24273 PMID: 24121596
  39. Marzoog BA. Endothelial cell autophagy in the context of disease development. Anat Cell Biol 2023; 56(1): 16-24. doi: 10.5115/acb.22.098 PMID: 36267005
  40. Torisu T, Torisu K, Lee IH, et al. Autophagy regulates endothelial cell processing, maturation and secretion of von Willebrand factor. Nat Med 2013; 19(10): 1281-7. doi: 10.1038/nm.3288 PMID: 24056772
  41. Bharath LP, Mueller R, Li Y, et al. Impairment of autophagy in endothelial cells prevents shear-stress-induced increases in nitric oxide bioavailability. Can J Physiol Pharmacol 2014; 92(7): 605-12. doi: 10.1139/cjpp-2014-0017 PMID: 24941409
  42. Chen Q, Wang Q, Zhu J, Xiao Q, Zhang L. Reactive oxygen species: Key regulators in vascular health and diseases. Br J Pharmacol 2018; 175(8): 1279-92. doi: 10.1111/bph.13828 PMID: 28430357
  43. Montezano AC, Touyz RM. Reactive oxygen species, vascular Noxs, and hypertension: focus on translational and clinical research. Antioxid Redox Signal 2014; 20(1): 164-82. doi: 10.1089/ars.2013.5302 PMID: 23600794
  44. Hua Y, Zhang J, Liu Q, et al. The induction of endothelial autophagy and its role in the development of atherosclerosis. Front Cardiovasc Med 2022; 9(Mar): 831847. doi: 10.3389/fcvm.2022.831847 PMID: 35402552
  45. Vion AC, Kheloufi M, Hammoutene A, et al. Autophagy is required for endothelial cell alignment and atheroprotection under physiological blood flow. Proc Natl Acad Sci 2017; 114(41): E8675-84. doi: 10.1073/pnas.1702223114 PMID: 28973855
  46. Tang X, Luo YX, Chen HZ, Liu DP. Mitochondria, endothelial cell function, and vascular diseases. Front Physiol 2014; 5: 175. doi: 10.3389/fphys.2014.00175 PMID: 24834056
  47. Kumar V, Jurkunas UV. Mitochondrial dysfunction and mitophagy in fuchs endothelial corneal dystrophy. Cells 2021; 10(8): 1888. doi: 10.3390/cells10081888 PMID: 34440658
  48. Chan KY, Yan C-CS, Roan H-Y, Hsu S-C, Tseng T-L, Hsiao C-D. Skin cells undergo asynthetic fission to expand body surfaces in zebrafish. Nature 2022; 605(7908): 119-25. doi: 10.1038/s41586-022-04641-0
  49. Zhunina OA, Yabbarov NG, Grechko AV, et al. The role of mitochondrial dysfunction in vascular disease, tumorigenesis, and diabetes. Front Mol Biosci 2021; 8: 671908. doi: 10.3389/fmolb.2021.671908 PMID: 34026846
  50. Ramakrishnan RK, Bajbouj K, Hachim MY, et al. Enhanced mitophagy in bronchial fibroblasts from severe asthmatic patients. PLoS One 2020; 15(11): e0242695. doi: 10.1371/journal.pone.0242695 PMID: 33253229
  51. Marzoog BA. Autophagy in cancer cell transformation: A potential novel therapeutic strategy. Curr Cancer Drug Targets 2022; 22(9): 749-56. doi: 10.2174/1568009622666220428102741 PMID: 36062863
  52. Chang AL, Ulrich A, Suliman HB, Piantadosi CA. Redox regulation of mitophagy in the lung during murine Staphylococcus aureus sepsis. Free Radic Biol Med 2015; 78: 179-89. doi: 10.1016/j.freeradbiomed.2014.10.582 PMID: 25450328
  53. Rouschop KMA, van den Beucken T, Dubois L, et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest 2010; 120(1): 127-41. doi: 10.1172/JCI40027 PMID: 20038797
  54. Ward C, Martinez-Lopez N, Otten EG, et al. Autophagy, lipophagy and lysosomal lipid storage disorders. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861(4): 269-84. doi: 10.1016/j.bbalip.2016.01.006 PMID: 26778751
  55. Marzoog BA. Local lung fibroblast autophagy in the context of lung fibrosis pathogenesis. Curr Respir Med Rev 2023; 19(1): 6-11. doi: 10.2174/1573398X19666221130141600
  56. Marzoog BA, Vlasova TI. The possible puzzles of BCG vaccine in protection against COVID-19 infection. Egypt J Bronchol 2021; 15(1): 7. doi: 10.1186/s43168-021-00052-3
  57. Zhou H, Zhu P, Wang J, Zhu H, Ren J, Chen Y. Pathogenesis of cardiac ischemia reperfusion injury is associated with CK2α-disturbed mitochondrial homeostasis via suppression of FUNDC1-related mitophagy. Cell Death Differ 2018; 25(6): 1080-93. doi: 10.1038/s41418-018-0086-7 PMID: 29540794
  58. Yang M, Linn BS, Zhang Y, Ren J. Mitophagy and mitochondrial integrity in cardiac ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2019; 1865(9): 2293-302. doi: 10.1016/j.bbadis.2019.05.007 PMID: 31100337
  59. Qin C, Gu J, Liu R, et al. Release of mitochondrial DNA correlates with peak inflammatory cytokines in patients with acute myocardial infarction. Anatol J Cardiol 2017; 17(3): 224-8. PMID: 27721319
  60. Shimada K, Crother TR, Karlin J, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 2012; 36(3): 401-14. doi: 10.1016/j.immuni.2012.01.009 PMID: 22342844
  61. Toldo S, Abbate A. The NLRP3 inflammasome in acute myocardial infarction. Nat Rav Card 2018; 15: 203-14. doi: 10.1038/nrcardio.2017.161
  62. Elmadhun NY, Sabe AA, Lassaletta AD, Chu LM, Sellke FW. Metformin mitigates apoptosis in ischemic myocardium. J Surg Res 2014; 192(1): 50-8. doi: 10.1016/j.jss.2014.05.005 PMID: 24969550
  63. Soraya H, Rameshrad M, Mokarizadeh A, Garjani A. Metformin attenuates myocardial remodeling and neutrophil recruitment after myocardial infarction in rat. Bioimpacts 2017; 5(1): 3-8. doi: 10.15171/bi.2015.02 PMID: 25901291
  64. Aoki Y, Kanki T, Hirota Y, et al. Phosphorylation of Serine 114 on Atg32 mediates mitophagy. Mol Biol Cell 2011; 22(17): 3206-17. doi: 10.1091/mbc.e11-02-0145 PMID: 21757540
  65. Manjithaya R, Jain S, Farré JC, Subramani S. A yeast MAPK cascade regulates pexophagy but not other autophagy pathways. J Cell Biol 2010; 189(2): 303-10. doi: 10.1083/jcb.200909154 PMID: 20385774
  66. Wu HB, Yang S, Weng HY, et al. Autophagy-induced KDR/VEGFR-2 activation promotes the formation of vasculogenic mimicry by glioma stem cells. Autophagy 2017; 13(9): 1528-42. doi: 10.1080/15548627.2017.1336277 PMID: 28812437
  67. Schaaf MB, Houbaert D, Meçe O, Agostinis P. Autophagy in endothelial cells and tumor angiogenesis. Cell Death Differ 2019; 26(4): 665-79. doi: 10.1038/s41418-019-0287-8
  68. Zhao Y, Yang J, Liao W, et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol 2010; 12(7): 665-75. doi: 10.1038/ncb2069 PMID: 20543840
  69. Li C, Tan Y, Wu J, et al. Resveratrol improves bnip3-related mitophagy and attenuates high-fat-induced endothelial dysfunction. Front Cell Dev Biol 2020; 8: 796. doi: 10.3389/fcell.2020.00796 PMID: 32923443
  70. Wong WT, Cooke JP. Therapeutic transdifferentiation of human fibroblasts into endothelial cells using forced expression of lineage-specific transcription factors. J Tissue Eng 2016; 7: 2041731416628329. doi: 10.1177/2041731416628329 PMID: 27081470
  71. Margariti A, Winkler B, Karamariti E, et al. Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels. Proc Natl Acad Sci 2012; 109(34): 13793-8. doi: 10.1073/pnas.1205526109 PMID: 22869753
  72. Morita R, Suzuki M, Kasahara H, et al. ETS transcription factor ETV2 directly converts human fibroblasts into functional endothelial cells. Proc Natl Acad Sci 2015; 112(1): 160-5. doi: 10.1073/pnas.1413234112 PMID: 25540418
  73. Lee S, Park C, Han JW, et al. Direct reprogramming of human dermal fibroblasts into endothelial cells using ER71/ETV2. Circ Res 2017; 120(5): 848-61. doi: 10.1161/CIRCRESAHA.116.309833 PMID: 28003219
  74. Han JK, Shin Y, Sohn MH, et al. Direct conversion of adult human fibroblasts into functional endothelial cells using defined factors. Biomaterials 2021; 272: 120781. doi: 10.1016/j.biomaterials.2021.120781 PMID: 33848809
  75. Han JK, Chang SH, Cho HJ, et al. Direct conversion of adult skin fibroblasts to endothelial cells by defined factors. Circulation 2014; 130(14): 1168-78. doi: 10.1161/CIRCULATIONAHA.113.007727 PMID: 25186941
  76. Mathison M, Sanagasetti D, Singh VP, et al. Fibroblast transition to an endothelial "trans" state improves cell reprogramming efficiency. Sci Rep 2021; 11(1): 22605. doi: 10.1038/s41598-021-02056-x PMID: 34799643
  77. Anokye-Danso F, Trivedi CM, Juhr D, et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 2011; 8(4): 376-88. doi: 10.1016/j.stem.2011.03.001 PMID: 21474102
  78. Oh JE, Jung C, Yoon Y. Human induced pluripotent stem cell-derived vascular cells: Recent progress and future directions. J Cardiovasc Dev Dis 2021; 8(11): 148. doi: 10.3390/jcdd8110148 PMID: 34821701
  79. Wälchli T, Farnhammer F, Fish JE. MicroRNA-based regulation of embryonic endothelial cell heterogeneity at single-cell resolution. Arterioscler Thromb Vasc Biol 2022; 42(3): 343-7. doi: 10.1161/ATVBAHA.122.317400 PMID: 35196110
  80. Zampetaki A, Kiechl S, Drozdov I, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 2010; 107(6): 810-7. doi: 10.1161/CIRCRESAHA.110.226357 PMID: 20651284
  81. Rosano S, Corà D, Parab S, et al. A regulatory microRNA network controls endothelial cell phenotypic switch during sprouting angiogenesis. eLife 2020; 9: e48095. doi: 10.7554/eLife.48095 PMID: 31976858
  82. Menghini R, Casagrande V, Marino A, et al. MiR-216a: A link between endothelial dysfunction and autophagy. Cell Death Dis 2014; 5(1): e1029. doi: 10.1038/cddis.2013.556 PMID: 24481443
  83. Ginsberg M, James D, Ding BS, et al. Efficient direct reprogramming of mature amniotic cells into endothelial cells by ETS factors and TGFβ suppression. Cell 2012; 151(3): 559-75. doi: 10.1016/j.cell.2012.09.032 PMID: 23084400
  84. Gao G, Chen W, Yan M, et al. Rapamycin regulates the balance between cardiomyocyte apoptosis and autophagy in chronic heart failure by inhibiting mTOR signaling. Int J Mol Med 2019; 45(1): 195-209. doi: 10.3892/ijmm.2019.4407 PMID: 31746373
  85. Boteon YL, Laing R, Mergental H, et al. Mechanisms of autophagy activation in endothelial cell and their targeting during normothermic machine liver perfusion. World J Gastroenterol 2017; 23(48): 8443-51. doi: 10.3748/wjg.v23.i48.8443 PMID: 29358854
  86. Ghosh AK, Mau T, O’Brien M, Garg S, Yung R. Impaired autophagy activity is linked to elevated ER-stress and inflammation in aging adipose tissue. Aging 2016; 8(10): 2525-37. doi: 10.18632/aging.101083 PMID: 27777379
  87. Gorgoulis V, Adams PD, Alimonti A, et al. Cellular senescence: Defining a path forward. Cell 2019; 179(4): 813-27. doi: 10.1016/j.cell.2019.10.005 PMID: 31675495
  88. Bjedov I, Cochemé HM, Foley A, et al. Fine-tuning autophagy maximises lifespan and is associated with changes in mitochondrial gene expression in Drosophila. PLoS Genet 2020; 16(11): e1009083. doi: 10.1371/journal.pgen.1009083 PMID: 33253201
  89. Jiang F. Autophagy in vascular endothelial cells. Clin Exp Pharmacol Physiol 2016; 43(11): 1021-8. doi: 10.1111/1440-1681.12649 PMID: 27558982
  90. Jeong IH, Bae WY, Choi JS, Jeong JW. Ischemia induces autophagy of endothelial cells and stimulates angiogenic effects in a hindlimb ischemia mouse model. Cell Death Dis 2020; 11(8): 624. doi: 10.1038/s41419-020-02849-4 PMID: 32796816
  91. An R, Man Y, Cheng K, et al. Sickle red blood cell-derived extracellular vesicles activate endothelial cells and enhance sickle red cell adhesion mediated by von Willebrand factor. Br J Haematol 2023; 201(3): 552-63. doi: 10.1111/bjh.18616 PMID: 36604837
  92. Piccin A, Steurer M, Feistritzer C, et al. Observational retrospective study of vascular modulator changes during treatment in essential thrombocythemia. Transl Res 2017; 184: 21-34. doi: 10.1016/j.trsl.2017.02.001 PMID: 28259616
  93. Andrea P, Steurer M, Gianni B. New insights into sinusoidal obstruction syndrome. Intern Med J 2017; 47(10): 1173-83. doi: 10.1111/imj.13550
  94. Vindis C. Autophagy: An emerging therapeutic target in vascular diseases. Br J Pharmacol 2015; 172(9): 2167-78. doi: 10.1111/bph.13052 PMID: 25537552
  95. Yang A, Kimmelman AC. Inhibition of autophagy attenuates pancreatic cancer growth independent of TP53/TRP53 status. Autophagy 2014; 10(9): 1683-4. doi: 10.4161/auto.29961 PMID: 25046107
  96. Abdullah Marzoog B. Caveolae’s behavior in norm and pathology. Emir Med J 2023; 4(2): e080523216639. doi: 10.2174/0250688204666230508112229
  97. Marzoog BA. Autophagy behavior in post-myocardial infarction injury. Cardiovasc Hematol Disord Drug Targets 2023; 23. doi: 10.2174/1871529X23666230503123612 PMID: 37138481
  98. Marzoog BA. Clinical case of a combination of endocrine, metabolic, and mental pathologies: Hypopituitarism associated with organic personality disorder. Emir Med J 2023; 4(2): e170423215880. doi: 10.2174/0250688204666230417092226

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers