Neuropsychiatric Symptoms are Related to Blood-biomarkers in Major Neurocognitive Disorders


Cite item

Full Text

Abstract

Background:Neuropsychiatric symptoms (NPS) are highly prevalent among individuals with major neurocognitive disorders (MNCD). Objective: Here, we characterized blood biomarkers (metabolic, inflammatory, neurotrophic profiles and total antioxidant), body composition, physical fitness and quality of life (QoL) in individuals with MNCD according to NPS.

Methods:The sample comprised 34 older adults (71.4% women; 74.06±6.03 yrs, with MNCD diagnosis) categorized according to 50th percentile [Low (≤12) or High (≥13)] for NPS (Neuropsychiatric Inventory Questionnaire). Sociodemographic, clinical data, body composition, anthropometric, cognitive assessment (ADAS-Cog), physical fitness (Senior Fitness Test), QoL (QoLAlzheimer’s Disease scale) were evaluated, and blood samples were collected for biochemical analysis.

Results:Low compared to high NPS group showed higher levels of IL-6, IGF-1and neurotrophic zscore (composite of IGF-1, VEGF-1, BDNF). Additionally, low compared to high NPS group have higher QoL, aerobic fitness and upper body and lower body strength.

Conclusion:The severity of NPS seems to be related to modified neurotrophic and inflammatory outcomes, lower physical fitness, and poor QoL. Strategies to counteract NPS development may preserve the physical and mental health of individuals with MNCD.

About the authors

Inês Marques-Aleixo

Interdisciplinary Research Centre for Education and Development, Lusófona University

Author for correspondence.
Email: info@benthamscience.net

Arnaldina Sampaio

CIAFEL, Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto

Email: info@benthamscience.net

Lucimére Bohn

Interdisciplinary Research Centre for Education and Development, Lusófona University

Email: info@benthamscience.net

Flavia Machado

Research Centre in Physical Activity, Health, and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto

Email: info@benthamscience.net

Duarte Barros

Research Centre in Physical Activity, Health, and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto

Email: info@benthamscience.net

Oscár Ribeiro

CINTESIS - Center for Health Technology and Services Research, Department of Education and Psychology, University of Aveiro

Email: info@benthamscience.net

Joana Carvalho

Research Centre in Physical Activity, Health, and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto

Email: info@benthamscience.net

José Magalhães

Research Centre in Physical Activity, Health, and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto

Email: info@benthamscience.net

References

  1. Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020; 396(10248): 413-46. doi: 10.1016/S0140-6736(20)30367-6 PMID: 32738937
  2. Gerlach LB, Kales HC. Pharmacological management of neuropsychiatric symptoms of dementia. Curr Treat Options Psychiatry 2020; 7(4): 489-507. doi: 10.1007/s40501-020-00233-9 PMID: 33344107
  3. Chapman KR, Tremont G, Malloy P, Spitznagel MB. The role of sexual disinhibition to predict caregiver burden and desire to institutionalize among family dementia caregivers. J Geriatr Psychiatry Neurol 2020; 33(1): 42-51. doi: 10.1177/0891988719856688 PMID: 31203702
  4. Sampaio A, Marques-Aleixo I, Seabra A, Mota J, Carvalho J. Physical exercise for individuals with dementia: Potential benefits perceived by formal caregivers. BMC Geriatr 2021; 21(1): 6. doi: 10.1186/s12877-020-01938-5 PMID: 33407194
  5. Ng KP, Pascoal TA, Mathotaarachchi S, et al. Neuropsychiatric symptoms are early indicators of an upcoming metabolic decline in Alzheimer’s disease. Transl Neurodegener 2021; 10(1): 1. doi: 10.1186/s40035-020-00225-y PMID: 33390174
  6. Okabe K, Nagata T, Shinagawa S, et al. Effects of neuropsychiatric symptoms of dementia on reductions in activities of daily living in patients with Alzheimer’s disease. Geriatr Gerontol Int 2020; 20(6): 584-8. doi: 10.1111/ggi.13918 PMID: 32232948
  7. Saari T, Hallikainen I, Hintsa T, Koivisto AM. Neuropsychiatric symptoms and activities of daily living in Alzheimer’s disease: ALSOVA 5-year follow-up study. Int Psychogeriatr 2020; 32(6): 741-51. doi: 10.1017/S1041610219001571 PMID: 31656211
  8. Camina Martín MA, de Mateo Silleras B, Redondo del Río MP. Body composition analysis in older adults with dementia. Anthropometry and bioelectrical impedance analysis: A critical review. Eur J Clin Nutr 2014; 68(11): 1228-33. doi: 10.1038/ejcn.2014.168 PMID: 25117995
  9. Sampaio A, Marques-Aleixo I, Seabra A, Mota J, Marques E, Carvalho J. Physical fitness in institutionalized older adults with dementia: Association with cognition, functional capacity and quality of life. Aging Clin Exp Res 2020; 32(11): 2329-38. doi: 10.1007/s40520-019-01445-7 PMID: 31927709
  10. Hall JR, Wiechmann AR, Johnson LA, et al. Biomarkers of vascular risk, systemic inflammation, and microvascular pathology and neuropsychiatric symptoms in Alzheimer’s disease. J Alzheimers Dis 2013; 35(2): 363-71. doi: 10.3233/JAD-122359 PMID: 23403534
  11. Holmes C, Cunningham C, Zotova E, Culliford D, Perry VH. Proinflammatory cytokines, sickness behavior, and Alzheimer disease. Neurology 2011; 77(3): 212-8. doi: 10.1212/WNL.0b013e318225ae07 PMID: 21753171
  12. Nagata T, Kobayashi N, Shinagawa S, Yamada H, Kondo K, Nakayama K. Plasma BDNF levels are correlated with aggressiveness in patients with amnestic mild cognitive impairment or Alzheimer disease. J Neural Transm (Vienna) 2014; 121(4): 433-41. doi: 10.1007/s00702-013-1121-y PMID: 24253237
  13. Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The Neuropsychiatric Inventory: Comprehensive assessment of psychopathology in dementia. Neurology 1994; 44(12): 2308-14. doi: 10.1212/WNL.44.12.2308 PMID: 7991117
  14. Lyketsos CG, Lopez O, Jones B, Fitzpatrick AL, Breitner J, DeKosky S. Prevalence of neuropsychiatric symptoms in dementia and mild cognitive impairment: Results from the cardiovascular health study. JAMA 2002; 288(12): 1475-83. doi: 10.1001/jama.288.12.1475 PMID: 12243634
  15. Peters ME, Rosenberg PB, Steinberg M, et al. Neuropsychiatric symptoms as risk factors for progression from CIND to dementia: The Cache County Study. Am J Geriatr Psychiatry 2013; 21(11): 1116-24. doi: 10.1016/j.jagp.2013.01.049 PMID: 23567370
  16. Nogueira J, Freitas S, Duro D, Almeida J, Santana I. Validation study of the Alzheimer’s disease assessment scale–cognitive subscale (ADAS-Cog) for the Portuguese patients with mild cognitive impairment and Alzheimer’s disease. Clin Neuropsychol 2018; 32 (Suppl. 1): 46-59. doi: 10.1080/13854046.2018.1454511 PMID: 29566598
  17. Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer’s disease. Am J Psychiatry 1984; 141(11): 1356-64. doi: 10.1176/ajp.141.11.1356 PMID: 6496779
  18. Rikli RE, Jones CJ. Development and validation of a functional fitness test for community-residing older adults. J Aging Phys Act 1999; 7(2): 129-61. doi: 10.1123/japa.7.2.129
  19. Rikli RE, Jones CJ. Senior fitness test manual. Champaign: Human Kinetics 2001.
  20. Hesseberg K, Bentzen H, Ranhoff AH, Engedal K, Bergland A. Physical fitness in older people with mild cognitive impairment and dementia. J Aging Phys Act 2016; 24(1): 92-100. doi: 10.1123/japa.2014-0202 PMID: 26098078
  21. Pavasini R, Guralnik J, Brown JC, et al. Short Physical Performance Battery and all-cause mortality: Systematic review and meta-analysis. BMC Med 2016; 14(1): 215. doi: 10.1186/s12916-016-0763-7 PMID: 28003033
  22. Guralnik JM, Simonsick EM, Ferrucci L, et al. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol 1994; 49(2): M85-94. doi: 10.1093/geronj/49.2.M85 PMID: 8126356
  23. Kwon S, Perera S, Pahor M, et al. What is a meaningful change in physical performance? Findings from a clinical trial in older adults (the LIFE-P study). J Nutr Health Aging 2009; 13(6): 538-44. doi: 10.1007/s12603-009-0104-z PMID: 19536422
  24. Mendes J, Amaral TF, Borges N, et al. Handgrip strength values of Portuguese older adults: A population based study. BMC Geriatr 2017; 17(1): 191-1. doi: 10.1186/s12877-017-0590-5 PMID: 28835211
  25. Sousa-Santos AR, Amaral TF. Differences in handgrip strength protocols to identify sarcopenia and frailty - a systematic review. BMC Geriatr 2017; 17(1): 238. doi: 10.1186/s12877-017-0625-y PMID: 29037155
  26. Bárrios HSG. Adaptação cultural e linguística e validação do instrumento QOL-AD para Portugal. 2013. Available from: https://repositorio.ul.pt/handle/10451/8409
  27. Miller M, Stone NJ, Ballantyne C, et al. Triglycerides and cardiovascular disease: A scientific statement from the American Heart Association. Circulation 2011; 123(20): 2292-333. doi: 10.1161/CIR.0b013e3182160726 PMID: 21502576
  28. Patterson MB, Whitehouse PJ, Edland SD, et al. ADCS Prevention Instrument Project: Quality of life assessment (QOL). Alzheimer Dis Assoc Disord 2006; 20(4) (Suppl. 3): S179-90. doi: 10.1097/01.wad.0000213874.25053.e5 PMID: 17135811
  29. Nepal B, Brown LJ, Anstey KJ. Rising midlife obesity will worsen future prevalence of dementia. PLoS One 2014; 9(9): e99305. doi: 10.1371/journal.pone.0099305 PMID: 25184830
  30. Liberman K, Forti LN, Beyer I, Bautmans I. The effects of exercise on muscle strength, body composition, physical functioning and the inflammatory profile of older adults. Curr Opin Clin Nutr Metab Care 2017; 20(1): 30-53. doi: 10.1097/MCO.0000000000000335 PMID: 27755209
  31. Venkatraman VK, Sanderson A, Cox KL, et al. Effect of a 24-month physical activity program on brain changes in older adults at risk of Alzheimer’s disease: The AIBL active trial. Neurobiol Aging 2020; 89: 132-41. doi: 10.1016/j.neurobiolaging.2019.02.030 PMID: 31324405
  32. Westerterp KR. Exercise, energy balance and body composition. Eur J Clin Nutr 2018; 72(9): 1246-50. doi: 10.1038/s41430-018-0180-4 PMID: 30185845
  33. Ferrucci L, Guralnik JM, Studenski S, Fried LP, Cutler GB Jr, Walston JD. Designing randomized, controlled trials aimed at preventing or delaying functional decline and disability in frail, older persons: A consensus report. J Am Geriatr Soc 2004; 52(4): 625-34. doi: 10.1111/j.1532-5415.2004.52174.x PMID: 15066083
  34. Conde-Sala JL, Reñé-Ramírez R, Turró-Garriga O, et al. Severity of dementia, anosognosia, and depression in relation to the quality of life of patients with Alzheimer disease: Discrepancies between patients and caregivers. Am J Geriatr Psychiatry 2014; 22(2): 138-47. doi: 10.1016/j.jagp.2012.07.001 PMID: 23567444
  35. Sampaio A, Marques EA, Mota J, Carvalho J. Effects of a multicomponent exercise program in institutionalized elders with Alzheimer’s disease. Dementia 2019; 18(2): 417-31. doi: 10.1177/1471301216674558 PMID: 27756836
  36. Mendonça DCB, Fernandes DR, Hernandez SS, Soares FDG, Figueiredo K, Coelho FGM. Physical exercise is effective for neuropsychiatric symptoms in Alzheimer’s disease: A systematic review. Arq Neuropsiquiatr 2021; 79(5): 447-56. doi: 10.1590/0004-282x-anp-2020-0284 PMID: 34161531
  37. Kouloutbani K, Venetsanou F, Markati A, Karteroliotis KE, Politis A. The effectiveness of physical exercise interventions in the management of neuropsychiatric symptoms in dementia patients: A systematic review. Int Psychogeriatr 2021; 34(2): 177-90. PMID: 33818342
  38. Vreugdenhil A, Cannell J, Davies A, Razay G. A community-based exercise programme to improve functional ability in people with Alzheimer’s disease: A randomized controlled trial. Scand J Caring Sci 2012; 26(1): 12-9. doi: 10.1111/j.1471-6712.2011.00895.x PMID: 21564154
  39. Lam FMH, Huang MZ, Liao LR, Chung RCK, Kwok TCY, Pang MYC. Physical exercise improves strength, balance, mobility, and endurance in people with cognitive impairment and dementia: A systematic review. J Physiother 2018; 64(1): 4-15. doi: 10.1016/j.jphys.2017.12.001 PMID: 29289581
  40. Sobol NA, Dall CH, Høgh P, et al. Change in fitness and the relation to change in cognition and neuropsychiatric symptoms after aerobic exercise in patients with mild Alzheimer’s disease. J Alzheimers Dis 2018; 65(1): 137-45. doi: 10.3233/JAD-180253 PMID: 30040719
  41. Morris JK, Vidoni ED, Johnson DK, et al. Aerobic exercise for Alzheimer’s disease: A randomized controlled pilot trial. PLoS One 2017; 12(2): e0170547. doi: 10.1371/journal.pone.0170547 PMID: 28187125
  42. Qu Y, Ma YH, Huang YY, et al. Blood biomarkers for the diagnosis of amnestic mild cognitive impairment and Alzheimer’s disease: A systematic review and meta-analysis. Neurosci Biobehav Rev 2021; 128: 479-86. doi: 10.1016/j.neubiorev.2021.07.007 PMID: 34245759
  43. Nowrangi MA. Neuropsychiatric aspects of alzheimer dementia. Psychiatr Clin North Am 2020; 43(2): 383-97. doi: 10.1016/j.psc.2020.02.012 PMID: 32439028
  44. Cunningham C, Campion S, Lunnon K, et al. Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol Psychiatry 2009; 65(4): 304-12. doi: 10.1016/j.biopsych.2008.07.024 PMID: 18801476
  45. Takeda S, Sato N, Morishita R. Systemic inflammation, blood-brain barrier vulnerability and cognitive/non-cognitive symptoms in Alzheimer disease: Relevance to pathogenesis and therapy. Front Aging Neurosci 2014; 6: 171. doi: 10.3389/fnagi.2014.00171 PMID: 25120476
  46. Pearson TA, Mensah GA, Alexander RW, et al. Markers of inflammation and cardiovascular disease: Application to clinical and public health practice: A statement for healthcare professionals from the centers for disease control and prevention and the american heart association. Circulation 2003; 107(3): 499-511. doi: 10.1161/01.CIR.0000052939.59093.45 PMID: 12551878
  47. James H. Biomarkers and depressive symptoms in a sample of cognitively intact and Alzheimer’s disease elderly males. Neurosci Med 2011; 2(4): 306-12.
  48. Vorobyov V, Bobkova N. The brain compensatory mechanisms and Alzheimer-s disease progression: A new protective strategy. Neural Regen Res 2015; 10(5): 696-7. doi: 10.4103/1673-5374.156954 PMID: 26109935
  49. Holmgren S, Hjorth E, Schultzberg M, et al. Neuropsychiatric symptoms in dementia—A role for neuroinflammation? Brain Res Bull 2014; 108: 88-93. doi: 10.1016/j.brainresbull.2014.09.003 PMID: 25224917
  50. Pedersen BK, Steensberg A, Fischer C, Keller C, Ostrowski K, Schjerling P. Exercise and cytokines with particular focus on muscle-derived IL-6. Exerc Immunol Rev 2001; 7: 18-31. PMID: 11579746
  51. Xu LZ, Li FY, Li BQ, et al. Decreased levels of insulin-like growth factor-1 are associated with alzheimer’s disease: A meta-analysis. J Alzheimers Dis 2021; 82(3): 1357-67. doi: 10.3233/JAD-210516 PMID: 34151815
  52. Swerdlow RH, Burns JM, Khan SM. The Alzheimer’s disease mitochondrial cascade hypothesis: Progress and perspectives. Biochim Biophys Acta Mol Basis Dis 2014; 1842(8): 1219-31. doi: 10.1016/j.bbadis.2013.09.010 PMID: 24071439
  53. Loeffler DA. Modifiable, non-modifiable, and clinical factors associated with progression of Alzheimer’s disease. J Alzheimers Dis 2021; 80(1): 1-27. doi: 10.3233/JAD-201182 PMID: 33459643
  54. Büttiker P, Weissenberger S, Esch T, et al. Dysfunctional mitochondrial processes contribute to energy perturbations in the brain and neuropsychiatric symptoms. Front Pharmacol 2023; 13: 1095923. doi: 10.3389/fphar.2022.1095923 PMID: 36686690
  55. Marques-Aleixo I, Beleza J, Sampaio A, et al. Preventive and therapeutic potential of physical exercise in neurodegenerative diseases. Antioxid Redox Signal 2021; 34(8): 674-93. doi: 10.1089/ars.2020.8075 PMID: 32159378

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers