The Relationship Between Sarcopenia And Proteinuria, What Do We Know?


Cite item

Full Text

Abstract

Sarcopenia is one of the most common geriatric syndromes in the elderly. It is defined as a decrease in muscle mass and function, and it can lead to physical disability, falls, poor quality of life, impaired immune system, and death. It is known that, the frequency of sarcopenia increases in the kidney patient population compared to healthy individuals. Although it is known that kidney disease can lead to sarcopenia; our knowledge of whether sarcopenia causes kidney disease is limited. Prior studies have suggested that protein energy wasting may be a risk of de novo CKD. Proteinuria is an important manifestation of kidney disease and there is a relationship between sarcopenia and proteinuria in diabetes, geriatric population, kidney transplant, and nephrotic syndrome. Does proteinuria cause sarcopenia or vice versa? Are they both the results of common mechanisms? This issue is not clearly known. In this review, we examined the relationship between sarcopenia and proteinuria in the light of other studies.

About the authors

Ozkan Gungor

Faculty of Medicine, Kahramanmaraş Sütçü İmam University

Email: info@benthamscience.net

Sena Ulu

Faculty of Medicine, Bahçeşehir University

Email: info@benthamscience.net

Ayca Inci

Department of Nephrology, Antalya Eğitim ve Araştırma Hastanesi

Author for correspondence.
Email: info@benthamscience.net

Kenan Topal

Department of Family Medicine, Adana Numune Eğitim ve Araştırma Hastanesi

Email: info@benthamscience.net

Kamyar Kalantar-Zadeh

Department of Nephrology, University of California Irvine School of Medicine

Email: info@benthamscience.net

References

  1. Rosenberg IH. Sarcopenia: Origins and clinical relevance. J Nutr 1997; 127(5): 990S-1S. doi: 10.1093/jn/127.5.990S PMID: 9164280
  2. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis. Age Ageing 2010; 39(4): 412-23. doi: 10.1093/ageing/afq034 PMID: 20392703
  3. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019; 48(1): 16-31. doi: 10.1093/ageing/afy169 PMID: 30312372
  4. Cruz-Jentoft AJ, Landi F, Schneider SM, et al. Prevalence of and interventions for sarcopenia in ageing adults: A systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 2014; 43(6): 748-59. doi: 10.1093/ageing/afu115 PMID: 25241753
  5. Castillo-Olea C, García-Zapirain Soto B, Carballo Lozano C, Zuñiga C. Automatic classification of sarcopenia level in older adults: A case study at tijuana general hospital. Int J Environ Res Public Health 2019; 16(18): 3275. doi: 10.3390/ijerph16183275 PMID: 31489909
  6. Morley JE. Hormones and Sarcopenia. Curr Pharm Des 2017; 23(30): 4484-92. PMID: 27881060
  7. Sgrò P, Sansone M, Sansone A, et al. Physical exercise, nutrition and hormones: Three pillars to fight sarcopenia. Aging Male 2019; 22(2): 75-88. doi: 10.1080/13685538.2018.1439004 PMID: 29451419
  8. Ábrigo J, Elorza AA, Riedel CA, et al. Role of oxidative stress as key regulator of muscle wasting during cachexia. Oxid Med Cell Longev 2018; 2018: 1-17. doi: 10.1155/2018/2063179 PMID: 29785242
  9. Gungor O, Sevinc M, Ulu S, Kocyigit I. Sarcopenia and cardiovascular disease in patients with and without kidney disease: What do we know? Int Urol Nephrol 2022; 55(5): 1161-71. doi: 10.1007/s11255-022-03393-0 PMID: 36327007
  10. Yang J, Jiang F, Yang M, Chen Z. Sarcopenia and nervous system disorders. J Neurol 2022; 269(11): 5787-97. doi: 10.1007/s00415-022-11268-8 PMID: 35829759
  11. Souza VA, Oliveira D, Barbosa SR, et al. Sarcopenia in patients with chronic kidney disease not yet on dialysis: Analysis of the prevalence and associated factors. PLoS One 2017; 12(4): e0176230. doi: 10.1371/journal.pone.0176230 PMID: 28448584
  12. Pereira RA, Cordeiro AC, Avesani CM, et al. Sarcopenia in chronic kidney disease on conservative therapy: Prevalence and association with mortality. Nephrol Dial Transplant 2015; 30(10): 1718-25. doi: 10.1093/ndt/gfv133 PMID: 25999376
  13. Bouchi R, Fukuda T, Takeuchi T, Minami I, Yoshimoto T, Ogawa Y. Sarcopenia is associated with incident albuminuria in patients with type 2 diabetes: A retrospective observational study. J Diabetes Investig 2017; 8(6): 783-7. doi: 10.1111/jdi.12636 PMID: 28130832
  14. Moreno-Gonzalez R, Corbella X, Mattace-Raso F, et al. Prevalence of sarcopenia in community-dwelling older adults using the updated EWGSOP2 definition according to kidney function and albuminuria: The Screening for CKD among Older People across Europe (SCOPE) study. BMC Geriatr 2020; 20(S1): 327.
  15. Menna Barreto APM, Barreto Silva MI, Pontes KSS, et al. Sarcopenia and its components in adult renal transplant recipients: prevalence and association with body adiposity. Br J Nutr 2019; 122(12): 1386-97. doi: 10.1017/S0007114519002459 PMID: 31551095
  16. Matyjek A, Literacki S, Niemczyk S, Rymarz A. Protein energy wasting associated with nephrotic syndrome – the comparison of metabolic pattern in severe nephrosis to different stages of chronic kidney disease. BMC Nephrol 2020; 21(1): 346. doi: 10.1186/s12882-020-02003-4 PMID: 32795277
  17. Yoo JH, Kim G, Park SW, et al. Effects of low skeletal muscle mass and sarcopenic obesity on albuminuria: A 7-year longitudinal study. Sci Rep 2020; 10(1): 5774. doi: 10.1038/s41598-020-62841-y PMID: 32238873
  18. Hwang D, Cho MR, Choi M, Lee SH, Park Y. Association between sarcopenia and dipstick proteinuria in the elderly population: The korea national health and nutrition examination surveys 2009–2011. Korean J Fam Med 2017; 38(6): 372-9. doi: 10.4082/kjfm.2017.38.6.372 PMID: 29209478
  19. Hara A, Tsujiguchi H, Suzuki K, et al. Relationship between handgrip strength and albuminuria in community-dwelling elderly Japanese subjects: The Shika Study. Biomarkers 2020; 25(7): 587-93. doi: 10.1080/1354750X.2020.1819418 PMID: 32893687
  20. Xia L, Zhao R, Wan Q, et al. Sarcopenia and adverse health‐related outcomes: An umbrella review of meta‐analyses of observational studies. Cancer Med 2020; 9(21): 7964-78. doi: 10.1002/cam4.3428 PMID: 32924316
  21. Kim TN, Lee EJ, Hong JW, et al. Relationship between sarcopenia and albuminuria. Medicine 2016; 95(3): e2500. doi: 10.1097/MD.0000000000002500 PMID: 26817888
  22. Bůžková P, Barzilay JI, Fink HA. et al. Higher albumin:Creatinine ratio and lower estimated glomerular filtration rate are potential risk factors for decline of physical performance in the elderly: the Cardiovascular Health Study. Clin Kidney J 2019; 12(6): 788-94. doi: 10.1093/ckj/sfz024 PMID: 31807292
  23. Han E, Lee Y, Kim G, et al. Sarcopenia is associated with albuminuria independently of hypertension and diabetes: KNHANES 2008–2011. Metabolism 2016; 65(10): 1531-40. doi: 10.1016/j.metabol.2016.07.003 PMID: 27621188
  24. Glassock RJ, Rule AD. The implications of anatomical and functional changes of the aging kidney: with an emphasis on the glomeruli. Kidney Int 2012; 82(3): 270-7. doi: 10.1038/ki.2012.65 PMID: 22437416
  25. Lee Y, Kim JE, Roh YH, et al. The combination of vitamin D deficiency and mild to moderate chronic kidney disease is associated with low bone mineral density and deteriorated femoral microarchitecture: Results from the KNHANES 2008-2011. J Clin Endocrinol Metab 2014; 99(10): 3879-88. doi: 10.1210/jc.2013-3764 PMID: 24878040
  26. Baumgartner RN, Wayne SJ, Waters DL, Janssen I, Gallagher D, Morley JE. Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obes Res 2004; 12(12): 1995-2004. doi: 10.1038/oby.2004.250 PMID: 15687401
  27. Schrager MA, Metter EJ, Simonsick E, et al. Sarcopenic obesity and inflammation in the InCHIANTI study. J Appl Physiol 2007; 102(3): 919-25. doi: 10.1152/japplphysiol.00627.2006 PMID: 17095641
  28. Robinson ES, Fisher ND, Forman JP, Curhan GC. Physical activity and albuminuria. Am J Epidemiol 2010; 171(5): 515-21. doi: 10.1093/aje/kwp442 PMID: 20133515
  29. Yang S, Xiao F, Pan L, et al. Association of serum irisin and body composition with chronic kidney disease in obese Chinese adults: A cross-sectional study. BMC Nephrol 2015; 16(1): 16. doi: 10.1186/s12882-015-0009-5 PMID: 25884312
  30. Wang J, Wang X, Gu Y, et al. Vitamin D is related to handgrip strength in adult men aged 50 years and over: A population study from the TCLSIH cohort study. Clin Endocrinol 2019; 90(5): 753-65. doi: 10.1111/cen.13952 PMID: 30776142
  31. Kim BJ, Kwak MK, Lee SH, Koh JM. Lack of association between vitamin d and hand grip strength in asians: A Nationwide population-based study. Calcif Tissue Int 2019; 104(2): 152-9. doi: 10.1007/s00223-018-0480-7 PMID: 30283988
  32. Kitsu T, Kabasawa K, Ito Y, et al. Low serum 25-hydroxyvitamin D is associated with low grip strength in an older Japanese population. J Bone Miner Metab 2020; 38(2): 198-204. doi: 10.1007/s00774-019-01040-w PMID: 31420750
  33. Timmerman KL, Volpi E. Endothelial function and the regulation of muscle protein anabolism in older adults. Nutr Metab Cardiovasc Dis 2013; 23(1): S44-50. doi: 10.1016/j.numecd.2012.03.013 PMID: 22902187
  34. Parvanova AI, Trevisan R, Iliev IP, et al. Insulin resistance and microalbuminuria: A cross-sectional, case-control study of 158 patients with type 2 diabetes and different degrees of urinary albumin excretion. Diabetes 2006; 55(5): 1456-62. doi: 10.2337/db05-1484 PMID: 16644705
  35. Sumukadas D, Struthers AD, McMurdo MET. Sarcopenia--a potential target for Angiotensin-converting enzyme inhibition? Gerontology 2006; 52(4): 237-42. doi: 10.1159/000093656 PMID: 16849867
  36. Izzo A, Massimino E, Riccardi G, Della Pepa G. A Narrative review on sarcopenia in type 2 diabetes mellitus: Prevalence and associated factors. Nutrients 2021; 13(1): 183. doi: 10.3390/nu13010183 PMID: 33435310
  37. Anagnostis P, Gkekas NK, Achilla C, et al. Type 2 diabetes mellitus is associated with increased risk of sarcopenia: A systematic review and meta-analysis. Calcif Tissue Int 2020; 107(5): 453-63. doi: 10.1007/s00223-020-00742-y PMID: 32772138
  38. Veronese N, Pizzol D, Demurtas J, et al. Association between sarcopenia and diabetes: A systematic review and meta-analysis of observational studies. Eur Geriatr Med 2019; 10(5): 685-96. doi: 10.1007/s41999-019-00216-x PMID: 34652699
  39. Pechmann LM, Jonasson TH, Canossa VS, et al. Sarcopenia in type 2 diabetes mellitus: A cross-sectional observational study. Int J Endocrinol 2020; 2020: 1-9. doi: 10.1155/2020/7841390 PMID: 33178269
  40. Ziaaldini MM, Marzetti E, Picca A, Murlasits Z. Biochemical pathways of sarcopenia and their modulation by physical exercise: A narrative review. Front Med 2017; 4: 167. doi: 10.3389/fmed.2017.00167
  41. Groop PH, Forsblom C, Thomas MC. Mechanisms of Disease: Pathway-selective insulin resistance and microvascular complications of diabetes. Nat Clin Pract Endocrinol Metab 2005; 1(2): 100-10. doi: 10.1038/ncpendmet0046 PMID: 16929378
  42. Tejada T, Catanuto P, Ijaz A, et al. Failure to phosphorylate AKT in podocytes from mice with early diabetic nephropathy promotes cell death. Kidney Int 2008; 73(12): 1385-93. doi: 10.1038/ki.2008.109 PMID: 18385666
  43. Ida S, Kaneko R, Imataka K, Murata K. Association between sarcopenia and renal function in patients with diabetes: A systematic review and meta-analysis. J Diabetes Res 2019; 2019: 1-11. doi: 10.1155/2019/1365189 PMID: 31828155
  44. Chang CJ, Lin CH, Hsieh HM, et al. Risk of sarcopenia among older persons with Type 2 diabetes mellitus with different status of albuminuria: A dose-responsive association. Arch Gerontol Geriatr 2021; 95: 104338. doi: 10.1016/j.archger.2021.104338 PMID: 33652335
  45. Carter CE, Gansevoort RT, Scheven L, et al. Influence of urine creatinine on the relationship between the albumin-to-creatinine ratio and cardiovascular events. Clin J Am Soc Nephrol 2012; 7(4): 595-603. doi: 10.2215/CJN.09300911 PMID: 22383750
  46. Lee YL, Jin H, Lim JY, Lee SY. Relationship between low handgrip strength and chronic kidney disease: KNHANES 2014-2017. J Ren Nutr 2021; 31(1): 57-63. doi: 10.1053/j.jrn.2020.03.002 PMID: 32381354
  47. Lim SY, Lee KB, Kim H, Hyun YY. Low Skeletal muscle mass predicts incident dipstick albuminuria in korean adults without chronic kidney disease: A prospective cohort study. Nephron J 2019; 141(2): 105-11. doi: 10.1159/000494392 PMID: 30415254
  48. Low S, Pek S, Moh A, et al. Low muscle mass is associated with progression of chronic kidney disease and albuminuria – An 8-year longitudinal study in Asians with Type 2 Diabetes. Diabetes Res Clin Pract 2021; 174: 108777. doi: 10.1016/j.diabres.2021.108777 PMID: 33745995
  49. Kim TN, Choi KM. The implications of sarcopenia and sarcopenic obesity on cardiometabolic disease. J Cell Biochem 2015; 116(7): 1171-8. doi: 10.1002/jcb.25077 PMID: 25545054
  50. Ozkayar N, Altun B, Halil M, et al. Evaluation of sarcopenia in renal transplant recipients. Nephrourol Mon 2014; 6(4): e20055. doi: 10.5812/numonthly.20055 PMID: 25695027
  51. Zingerman B, Erman A, Mashraki T, Chagnac A, Rozen-Zvi B, Rahamimov R. Association of obesity and muscle mass with risk of albuminuria in renal transplant recipients. J Nephrol 2021; 34(4): 1315-25. doi: 10.1007/s40620-020-00883-1 PMID: 33098523
  52. Kaysen GA. Albumin metabolism in the nephrotic syndrome: The effect of dietary protein intake. Am J Kidney Dis 1988; 12(6): 461-80. doi: 10.1016/S0272-6386(88)80097-0 PMID: 3057880
  53. Jiang F, Bo Y, Cui T, et al. Estimating the hydration status in nephrotic patients by leg electrical resistivity measuring method. Nephrology 2010; 15(4): 476-9. doi: 10.1111/j.1440-1797.2010.01267.x PMID: 20609101
  54. Gungor O, Demirci MS, Kircelli F, et al. Increased arterial stiffness in patients with nephrotic syndrome. Clin Nephrol 2013; 79(1): 1-6. doi: 10.5414/CN107760 PMID: 22948122
  55. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002; 39(2): S1-S266. PMID: 11904577
  56. Lim D, Lee DY, Cho SH, et al. Diagnostic accuracy of urine dipstick for proteinuria in older outpatients. Kidney Res Clin Pract 2014; 33(4): 199-203. doi: 10.1016/j.krcp.2014.10.003 PMID: 26885477
  57. Verma V, Kant R, Sunnoqrot N, Gambert SR. Proteinuria in the elderly: Evaluation and management. Int Urol Nephrol 2012; 44(6): 1745-51. doi: 10.1007/s11255-012-0252-7 PMID: 22826147
  58. Wen CP, Yang YC, Tsai MK, Wen SF. Urine dipstick to detect trace proteinuria: An underused tool for an underappreciated risk marker. Am J Kidney Dis 2011; 58(1): 1-3. doi: 10.1053/j.ajkd.2011.05.007 PMID: 21684434

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers