Molecular Mechanisms of Polyphenols in Management of Skin Aging


Cite item

Full Text

Abstract

:The natural process of skin aging is influenced by a variety of factors, including oxidative stress, inflammation, collagen degradation, and UV radiation exposure. The potential of polyphenols in controlling skin aging has been the subject of much investigation throughout the years. Due to their complex molecular pathways, polyphenols, a broad class of bioactive substances present in large quantities in plants, have emerged as attractive candidates for skin anti-aging therapies. This review aims to provide a comprehensive overview of the molecular mechanisms through which polyphenols exert their anti-aging effects on the skin. Various chemical mechanisms contribute to reducing skin aging signs and maintaining a vibrant appearance. These mechanisms include UV protection, moisturization, hydration, stimulation of collagen synthesis, antioxidant activity, and anti-inflammatory actions. These mechanisms work together to reduce signs of aging and keep the skin looking youthful. Polyphenols, with their antioxidant properties, are particularly noteworthy. They can neutralize free radicals, lessening oxidative stress that might otherwise cause collagen breakdown and DNA damage. The anti-inflammatory effects of polyphenols are explored, focusing on their ability to suppress pro-inflammatory cytokines and enzymes, thereby alleviating inflammation and its detrimental effects on the skin. Understanding these mechanisms can guide future research and development, leading to the development of innovative polyphenol-based strategies for maintaining healthy skin.

About the authors

Deepti Dwevedi

Department of Pharmacy,, Dr. Ram Manohar Lohia Avadh University

Author for correspondence.
Email: info@benthamscience.net

Ankur Srivastava

Department of Pharmacy, Dr. Ram Manohar Lohia Avadh University

Email: info@benthamscience.net

References

  1. Lee Y, Park J, Choe A, Cho S, Kim J, Ko H. Mimicking human and biological skins for multifunctional skin electronics. Adv Funct Mater 2020; 30(20): 1904523. doi: 10.1002/adfm.201904523
  2. Celleno L, Tamburi F. Structure and function of the skin. InNutritional Cosmetics . William Andrew Publishing 2009; pp. 3-45. doi: 10.1016/B978-0-8155-2029-0.50008-9
  3. Trüeb RM. Effect of ultraviolet radiation, smoking and nutrition on hair. Curr Probl Dermatol 2015; 47: 107-20. doi: 10.1159/000369411 PMID: 26370649
  4. Bielach-Bazyluk A, Zbroch E, Mysliwiec H, et al. Sirtuin 1 and skin: Implications in intrinsic and extrinsic aging—a systematic review. Cells 2021; 10(4): 813. doi: 10.3390/cells10040813 PMID: 33917352
  5. Pullar J, Carr A, Vissers M. The roles of vitamin C in skin health. Nutrients 2017; 9(8): 866. doi: 10.3390/nu9080866 PMID: 28805671
  6. Wu YL, Chao SR. The effects of a beauty program on self-perception of aging and depression among community-dwelling older adults in an agricultural area in taiwan. InHealthcare . 2023; 11: p. (10)1377. doi: 10.3390/healthcare11101377
  7. Saxon SV, Etten MJ, Perkins EA, RNLD F. Physical change and aging: A guide for helping professions 2021.
  8. Kasprzak-Drozd K, Oniszczuk T, Stasiak M, Oniszczuk A. Beneficial effects of phenolic compounds on gut microbiota and metabolic syndrome. Int J Mol Sci 2021; 22(7): 3715. doi: 10.3390/ijms22073715 PMID: 33918284
  9. Debelo H, Li M, Ferruzzi MG. Processing influences on food polyphenol profiles and biological activity. Curr Opin Food Sci 2020; 32: 90-102. doi: 10.1016/j.cofs.2020.03.001
  10. Bertelli A, Biagi M, Corsini M, Baini G, Cappellucci G, Miraldi E. Polyphenols: From theory to practice. Foods 2021; 10(11): 2595. doi: 10.3390/foods10112595 PMID: 34828876
  11. De Pessemier B, Grine L, Debaere M, Maes A, Paetzold B, Callewaert C. Gut–skin axis: Current knowledge of the interrelationship between microbial dysbiosis and skin conditions. Microorganisms 2021; 9(2): 353. doi: 10.3390/microorganisms9020353 PMID: 33670115
  12. Kumar Singh A, Cabral C, Kumar R, et al. Beneficial effects of dietary polyphenols on gut microbiota and strategies to improve delivery efficiency. Nutrients 2019; 11(9): 2216. doi: 10.3390/nu11092216 PMID: 31540270
  13. Michalak M. Plant-derived antioxidants: Significance in skin health and the ageing process. Int J Mol Sci 2022; 23(2): 585. doi: 10.3390/ijms23020585 PMID: 35054770
  14. Singla RK, Dubey AK, Garg A, et al. Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures. J AOAC Int 2019; 102(5): 1397-400. doi: 10.5740/jaoacint.19-0133 PMID: 31200785
  15. Crozier A, Jaganath IB, Clifford MN. Phenols, polyphenols and tannins: An overview. Plant secondary metabolites: Occurrence, structure and role in the human diet. 2006; 1: pp. 1-25. doi: 10.1002/9780470988558.ch1
  16. Eicks M, Maurino V, Knappe S, Flügge UI, Fischer K. The plastidic pentose phosphate translocator represents a link between the cytosolic and the plastidic pentose phosphate pathways in plants. Plant Physiol 2002; 128(2): 512-22. doi: 10.1104/pp.010576 PMID: 11842155
  17. Strack D. 10—Phenolic metabolism. London, UK: Academic Press 1997; 3: pp. 487-16.
  18. Bhuyan U, Handique JG. Plant polyphenols as potent antioxidants: Highlighting the mechanism of antioxidant activity and synthesis/development of some polyphenol conjugates. Stud Nat Prod Chem 2022; 75: 243-66. doi: 10.1016/B978-0-323-91250-1.00006-9
  19. Fisher GJ, Varani J, Voorhees JJ. Looking older. Arch Dermatol 2008; 144(5): 666-72. doi: 10.1001/archderm.144.5.666 PMID: 18490597
  20. Farage MA, Miller KW, Elsner P, Maibach HI. Functional and physiological characteristics of the aging skin. Aging Clin Exp Res 2008; 20(3): 195-200. doi: 10.1007/BF03324769 PMID: 18594185
  21. Liochev SI. Reactive oxygen species and the free radical theory of aging. Free Radic Biol Med 2013; 60: 1-4. doi: 10.1016/j.freeradbiomed.2013.02.011 PMID: 23434764
  22. Childs BG, Durik M, Baker DJ, van Deursen JM. Cellular senescence in aging and age-related disease: From mechanisms to therapy. Nat Med 2015; 21(12): 1424-35. doi: 10.1038/nm.4000 PMID: 26646499
  23. Rinnerthaler M, Bischof J, Streubel M, Trost A, Richter K. Oxidative stress in aging human skin. Biomolecules 2015; 5(2): 545-89. doi: 10.3390/biom5020545 PMID: 25906193
  24. Poljšak B, Dahmane R. Free radicals and extrinsic skin aging. Dermatol Res Pract 2012; 2012: 1-4. doi: 10.1155/2012/135206 PMID: 22505880
  25. Angerhofer CK, Maes D, Giacomoni PU. The use of natural compounds and botanicals in the development of anti-aging skin care products. InSkin aging handbook . William Andrew Publishing 2009; pp. 205-63. doi: 10.1016/B978-0-8155-1584-5.50014-4
  26. Forni C, Facchiano F, Bartoli M, et al. Beneficial role of phytochemicals on oxidative stress and age-related diseases. BioMed Res Int 2019; 2019: 1-16. doi: 10.1155/2019/8748253 PMID: 31080832
  27. Pizzino G, Irrera N, Cucinotta M, et al. Oxidative stress: Harms and benefits for human health. Oxidative medicine and cellular longevity. 2017. doi: 10.1155/2017/8416763
  28. Deepika , Maurya PK. Health benefits of quercetin in age-related diseases. Molecules 2022; 27(8): 2498. doi: 10.3390/molecules27082498 PMID: 35458696
  29. Tan BL, Norhaizan ME, Liew WPP, Sulaiman Rahman H. Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Front Pharmacol 2018; 9: 1162. doi: 10.3389/fphar.2018.01162 PMID: 30405405
  30. Kerkelä E, Saarialho-Kere U. Matrix metalloproteinases in tumor progression: focus on basal and squamous cell skin cancer. Exp Dermatol 2003; 12(2): 109-25. doi: 10.1034/j.1600-0625.2003.120201.x PMID: 12702139
  31. Bellayr IH, Mu X, Li Y. Biochemical insights into the role of matrix metalloproteinases in regeneration: Challenges and recent developments. Future Med Chem 2009; 1(6): 1095-111. doi: 10.4155/fmc.09.83 PMID: 20161478
  32. Ashcroft GS, Horan MA, Herrick SE, Tarnuzzer RW, Schultz GS, Ferguson MWJ. Age-related differences in the temporal and spatial regulation of matrix metalloproteinases (MMPs) in normal skin and acute cutaneous wounds of healthy humans. Cell Tissue Res 1997; 290(3): 581-91. doi: 10.1007/s004410050963 PMID: 9369533
  33. Suganuma K, Nakajima H, Ohtsuki M, Imokawa G. Astaxanthin attenuates the UVA-induced up-regulation of matrix-metalloproteinase-1 and skin fibroblast elastase in human dermal fibroblasts. J Dermatol Sci 2010; 58(2): 136-42. doi: 10.1016/j.jdermsci.2010.02.009 PMID: 20219323
  34. Wang M, Lakatta EG. Altered regulation of matrix metalloproteinase-2 in aortic remodeling during aging. Hypertension 2002; 39(4): 865-73. doi: 10.1161/01.HYP.0000014506.13322.66 PMID: 11967241
  35. Malavolta M, Costarelli L, Giacconi R, et al. Modulators of cellular senescence: Mechanisms, promises, and challenges from in vitro studies with dietary bioactive compounds. Nutr Res 2014; 34(12): 1017-35. doi: 10.1016/j.nutres.2014.02.006 PMID: 25476190
  36. Ergin V, Hariry RE, Karasu C. Carbonyl stress in aging process: Role of vitamins and phytochemicals as redox regulators. Aging Dis 2013; 4(5): 276-94. doi: 10.14336/AD.2013.0400276 PMID: 24124633
  37. Haines DD, Juhasz B, Tosaki A. Management of multicellular senescence and oxidative stress. J Cell Mol Med 2013; 17(8): 936-57. doi: 10.1111/jcmm.12074 PMID: 23789967
  38. Lee JH, Park J, Shin DW. The molecular mechanism of polyphenols with anti-aging activity in aged human dermal fibroblasts. Molecules 2022; 27(14): 4351. doi: 10.3390/molecules27144351 PMID: 35889225
  39. Yi R, Zhang J, Sun P, Qian Y, Zhao X. Protective effects of kuding tea (Ilex kudingcha CJ Tseng) polyphenols on UVB-induced skin aging in SKH1 hairless mice. Molecules 2019; 24(6): 1016. doi: 10.3390/molecules24061016 PMID: 30871261
  40. Chowdhury A, Nosoudi N, Karamched S, Parasaram V, Vyavahare N. Polyphenol treatments increase elastin and collagen deposition by human dermal fibroblasts; Implications to improve skin health. J Dermatol Sci 2021; 102(2): 94-100. doi: 10.1016/j.jdermsci.2021.03.002 PMID: 33766446
  41. Kwon KR, Alam MB, Park JH, Kim TH, Lee SH. Attenuation of UVB-induced photo-aging by polyphenolic-rich Spatholobus suberectus stem extract via modulation of MAPK/AP-1/MMPs signaling in human keratinocytes. Nutrients 2019; 11(6): 1341. doi: 10.3390/nu11061341 PMID: 31207929
  42. Arora I, Sharma M, Sun LY, Tollefsbol TO. The epigenetic link between polyphenols, aging and age-related diseases. Genes 2020; 11(9): 1094. doi: 10.3390/genes11091094 PMID: 32962067
  43. Ullah H, De Filippis A, Santarcangelo C, Daglia M. Epigenetic regulation by polyphenols in diabetes and related complications. Med J Nutrition Metab 2020; 13(4): 289-310. doi: 10.3233/MNM-200489
  44. Xu W, Luo Y, Yin J, Huang M, Luo F. Targeting AMPK signaling by polyphenols: A novel strategy for tackling aging. Food Funct 2023; 14(1): 56-73. doi: 10.1039/D2FO02688K PMID: 36524530
  45. Ayissi VBO, Ebrahimi A, Schluesenner H. Epigenetic effects of natural polyphenols: A focus on SIRT1‐mediated mechanisms. Mol Nutr Food Res 2014; 58(1): 22-32. doi: 10.1002/mnfr.201300195 PMID: 23881751
  46. Schagen SK, Zampeli VA, Makrantonaki E, Zouboulis CC. Discovering the link between nutrition and skin aging. Dermatoendocrinol 2012; 4(3): 298-307. doi: 10.4161/derm.22876 PMID: 23467449
  47. Tundis R, Loizzo MR, Bonesi M, Menichini F. Potential role of natural compounds against skin aging. Curr Med Chem 2015; 22(12): 1515-38. doi: 10.2174/0929867322666150227151809 PMID: 25723509

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers