Repercussion of Primary Nucleation Pathway: Dementia and Cognitive Impairment


Cite item

Full Text

Abstract

:Neurodegenerative diseases, such as Alzheimer's, Parkinson's, and prion disease, are characterized by the conversion of normally soluble proteins or peptides into aggregated amyloidal fibrils. These diseases result in the permanent loss of specific types of neurons, making them incurable and devastating. Research on animal models of memory problems mentioned in this article contributes to our knowledge of brain health and functionality. Neurodegenerative disorders, which often lead to cognitive impairment and dementia, are becoming more prevalent as global life expectancy increases. These diseases cause severe neurological impairment and neuronal death, making them highly debilitating. Exploring and understanding these complex diseases offer significant insights into the fundamental processes essential for maintaining brain health. Exploring the intricate mechanisms underlying neurodegenerative diseases not only holds promise for potential treatments but also enhances our understanding of fundamental brain health and functionality. By unraveling the complexities of these disorders, researchers can pave the way for advancements in diagnosis, treatment, and ultimately, improving the lives of individuals affected by neurodegenerative diseases.

About the authors

Aditya Singh

Faculty of Pharmacy, Integral University

Email: info@benthamscience.net

Vaseem Ansari

Faculty of Pharmacy, Integral University

Author for correspondence.
Email: info@benthamscience.net

Tarique Mahmood

Faculty of Pharmacy, Integral University

Email: info@benthamscience.net

Farogh Ahsan

Faculty of Pharmacy,, Integral University

Email: info@benthamscience.net

Shubhrat Maheshwari

Faculty of Pharmaceutical Sciences, Rama University

Email: info@benthamscience.net

References

  1. Yang Y, Adelstein SJ, Kassis AI. Target discovery from data mining approaches. Drug Discov Today 2009; 14(3-4): 147-54. doi: 10.1016/j.drudis.2008.12.005 PMID: 19135549
  2. Xie L, Li J, Xie L, Bourne PE. Drug discovery using chemical systems biology: Identification of the protein-ligand binding network to explain the side effects of CETP inhibitors. PLOS Comput Biol 2009; 5(5): e1000387. doi: 10.1371/journal.pcbi.1000387 PMID: 19436720
  3. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabási AL. The human disease network. Proc Natl Acad Sci USA 2007; 104(21): 8685-90. doi: 10.1073/pnas.0701361104 PMID: 17502601
  4. Loscalzo J, Kohane I, Barabasi AL. Human disease classification in the postgenomic era: A complex systems approach to human pathobiology. Mol Syst Biol 2007; 3(1): 124. doi: 10.1038/msb4100163 PMID: 17625512
  5. Hu G, Agarwal P. Human disease-drug network based on genomic expression profiles. PLoS One 2009; 4(8): e6536. doi: 10.1371/journal.pone.0006536 PMID: 19657382
  6. Stegmaier P, Krull M, Voss N, Kel AE, Wingender E. Molecular mechanistic associations of human diseases. BMC Syst Biol 2010; 4(1): 124. doi: 10.1186/1752-0509-4-124 PMID: 20815942
  7. Vidal M, Cusick ME, Barabási AL. Interactome networks and human disease. Cell 2011; 144(6): 986-98. doi: 10.1016/j.cell.2011.02.016 PMID: 21414488
  8. Hidalgo CA, Blumm N, Barabási AL, Christakis NA. A dynamic network approach for the study of human phenotypes. PLOS Comput Biol 2009; 5(4): e1000353. doi: 10.1371/journal.pcbi.1000353 PMID: 19360091
  9. Li GW, Xie XS. Central dogma at the single-molecule level in living cells. Nature 2011; 475(7356): 308-15. doi: 10.1038/nature10315 PMID: 21776076
  10. Fenimore PW, Frauenfelder H, McMahon BH, Parak FG. Slaving: Solvent fluctuations dominate protein dynamics and functions. Proc Natl Acad Sci 2002; 99(25): 16047-51. doi: 10.1073/pnas.212637899 PMID: 12444262
  11. Fitzpatrick AWP, Debelouchina GT, Bayro MJ, et al. Atomic structure and hierarchical assembly of a cross-β amyloid fibril. Proc Natl Acad Sci 2013; 110(14): 5468-73. doi: 10.1073/pnas.1219476110 PMID: 23513222
  12. Jiménez JL, Guijarro JI, Orlova E, et al. Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J 1999; 18(4): 815-21. doi: 10.1093/emboj/18.4.815 PMID: 10022824
  13. Hussain R, Zubair H, Pursell S, Shahab M. Neurodegenerative diseases: Regenerative mechanisms and novel therapeutic approaches. Brain Sci 2018; 8(9): 177. doi: 10.3390/brainsci8090177 PMID: 30223579
  14. Cicero CE, Mostile G, Vasta R, et al. Metals and neurodegenerative diseases. A systematic review. Environ Res 2017; 159: 82-94. doi: 10.1016/j.envres.2017.07.048 PMID: 28777965
  15. Gardner RC, Yaffe K. Epidemiology of mild traumatic brain injury and neurodegenerative disease. Mol Cell Neurosci 2015; 66(Pt B): 75-80. doi: 10.1016/j.mcn.2015.03.001 PMID: 25748121
  16. Rezazadeh M, Khorrami A, Yeghaneh T, et al. Genetic factors affecting late-onset Alzheimer’s disease susceptibility. Neuromolecular Med 2016; 18(1): 37-49. doi: 10.1007/s12017-015-8376-4 PMID: 26553058
  17. Hornberger M, Piguet O. Episodic memory in frontotemporal dementia: A critical review. Brain 2012; 135(3): 678-92. doi: 10.1093/brain/aws011 PMID: 22366790
  18. Rizek P, Kumar N, Jog MS. An update on the diagnosis and treatment of Parkinson disease. CMAJ 2016; 188(16): 1157-65. doi: 10.1503/cmaj.151179 PMID: 27221269
  19. Politi C, Ciccacci C, Novelli G, Borgiani P. Genetics and treatment response in Parkinson’s disease: an update on pharmacogenetic studies. Neuromolecular Med 2018; 20(1): 1-17. doi: 10.1007/s12017-017-8473-7 PMID: 29305687
  20. Schapira AHV. Glucocerebrosidase and Parkinson disease: Recent advances. Mol Cell Neurosci 2015; 66(Pt A): 37-42. doi: 10.1016/j.mcn.2015.03.013 PMID: 25802027
  21. Marques O, Outeiro TF. Alpha-synuclein: From secretion to dysfunction and death. Cell Death Dis 2012; 3(7): e350-0. doi: 10.1038/cddis.2012.94 PMID: 22825468
  22. Niedzielska E, Smaga I, Gawlik M, et al. Oxidative stress in neurodegenerative diseases. Mol Neurobiol 2016; 53(6): 4094-125. doi: 10.1007/s12035-015-9337-5 PMID: 26198567
  23. Erkkinen MG, Kim MO, Geschwind MD. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol 2018; 10(4): a033118. doi: 10.1101/cshperspect.a033118 PMID: 28716886
  24. Rai SN, Singh P. Advancement in the modelling and therapeutics of Parkinson’s disease. J Chem Neuroanat 2020; 104: 101752. doi: 10.1016/j.jchemneu.2020.101752 PMID: 31996329
  25. Marsh SE, Blurton-Jones M. Neural stem cell therapy for neurodegenerative disorders: The role of neurotrophic support. Neurochem Int 2017; 106: 94-100. doi: 10.1016/j.neuint.2017.02.006 PMID: 28219641
  26. Thrash-Williams B, Karuppagounder SS, Bhattacharya D, Ahuja M, Suppiramaniam V, Dhanasekaran M. Methamphetamine-induced dopaminergic toxicity prevented owing to the neuroprotective effects of salicylic acid. Life Sci 2016; 154: 24-9. doi: 10.1016/j.lfs.2016.02.072 PMID: 26926078
  27. Northrop NA, Yamamoto BK. Methamphetamine effects on blood-brain barrier structure and function. Front Neurosci 2015; 9: 69. doi: 10.3389/fnins.2015.00069 PMID: 25788874
  28. Pfrieger FW. Neurodegenerative Diseases and Cholesterol: Seeing the Field Through the Players. Front Aging Neurosci 2021; 13: 766587. doi: 10.3389/fnagi.2021.766587 PMID: 34803658
  29. Stephenson J, Nutma E, van der Valk P, Amor S. Inflammation in CNS neurodegenerative diseases. Immunology 2018; 154(2): 204-19. doi: 10.1111/imm.12922 PMID: 29513402
  30. Montero-Odasso M, Pieruccini-Faria F, Bartha R, et al. Motor phenotype in neurodegenerative disorders: Gait and balance platform study design protocol for the Ontario Neurodegenerative Research Initiative (ONDRI). J Alzheimers Dis 2017; 59(2): 707-21. doi: 10.3233/JAD-170149 PMID: 28671116
  31. Guo JL, Lee VMY. Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat Med 2014; 20(2): 130-8. doi: 10.1038/nm.3457 PMID: 24504409
  32. Glenner GG, Wong CW. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984; 120(3): 885-90. doi: 10.1016/S0006-291X(84)80190-4 PMID: 6375662
  33. Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Alzheimer Dis Assoc Disord 1988; 2(2): 134.
  34. Wimo A, Jönsson L, Bond J, Prince M, Winblad B, International AD. The worldwide economic impact of dementia 2010. Alzheimers Dement 2013; 9(1): 1-11.e3. doi: 10.1016/j.jalz.2012.11.006 PMID: 23305821
  35. Goodman RA, Lochner KA, Thambisetty M, Wingo TS, Posner SF, Ling SM. Prevalence of dementia subtypes in United States Medicare fee‐for‐service beneficiaries, 2011–2013. Alzheimers Dement 2017; 13(1): 28-37. doi: 10.1016/j.jalz.2016.04.002 PMID: 27172148
  36. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984; 34(7): 939-44. doi: 10.1212/WNL.34.7.939 PMID: 6610841
  37. Auluck PK, Chan HYE, Trojanowski JQ, Lee VMY, Bonini NM. Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 2002; 295(5556): 865-8. doi: 10.1126/science.1067389 PMID: 11823645
  38. Varma H, Lo D, Stockwell B. High throughput screening for neurodegeneration and complex disease phenotypes. Comb Chem High Throughput Screen 2008; 11(3): 238-48. doi: 10.2174/138620708783877753 PMID: 18336216
  39. Przedborski S, Vila M, Jackson-Lewis V. Series Introduction: Neurodegeneration: What is it and where are we? J Clin Invest 2003; 111(1): 3-10. doi: 10.1172/JCI200317522 PMID: 12511579
  40. Woolley JD, Khan BK, Murthy NK, Miller BL, Rankin KP. The diagnostic challenge of psychiatric symptoms in neurodegenerative disease: rates of and risk factors for prior psychiatric diagnosis in patients with early neurodegenerative disease. J Clin Psychiatry 2011; 72(2): 126-33. doi: 10.4088/JCP.10m06382oli PMID: 21382304
  41. Herrero MT, Morelli M. Multiple mechanisms of neurodegeneration and progression. Prog Neurobiol 2017; 155: 1-1. doi: 10.1016/j.pneurobio.2017.06.001 PMID: 28629600
  42. Davis AA, Leyns CEG, Holtzman DM. Intercellular spread of protein aggregates in neurodegenerative disease. Annu Rev Cell Dev Biol 2018; 34(1): 545-68. doi: 10.1146/annurev-cellbio-100617-062636 PMID: 30044648
  43. Kosik KS, Joachim CL, Selkoe DJ. Microtubule-associated protein tau (?) is a major antigenic component of paired helical filaments in Alzheimer disease. Alzheimer Dis Assoc Disord 1987; 1(3): 203. doi: 10.1097/00002093-198701030-00022
  44. Kosik KS, Selkoe DL. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proceedings of the National Academy of Sciences. 4044-8.
  45. Andreadis A, Brown WM, Kosik KS. Structure and novel exons of the human. tau. gene. Biochemistry 1992; 31(43): 10626-33. doi: 10.1021/bi00158a027 PMID: 1420178
  46. Smith CJ, Anderton BH, Davis DR, Gallo JM. Tau isoform expression and phosphorylation state during differentiation of cultured neuronal cells. FEBS Lett 1995; 375(3): 243-8. doi: 10.1016/0014-5793(95)01221-Y PMID: 7498509
  47. Chami L, Checler F. BACE1 is at the crossroad of a toxic vicious cycle involving cellular stress and β-amyloid production in Alzheimer’s disease. Mol Neurodegener 2012; 7(1): 52. doi: 10.1186/1750-1326-7-52 PMID: 23039869
  48. D’Adamo P, Menegon A, Lo Nigro C, et al. Mutations in GDI1 are responsible for X-linked non-specific mental retardation. Nat Genet 1998; 19(2): 134-9. doi: 10.1038/487 PMID: 9620768
  49. Hol EM, Roelofs RF, Moraal E, et al. Neuronal expression of GFAP in patients with Alzheimer pathology and identification of novel GFAP splice forms. Mol Psychiatry 2003; 8(9): 786-96. doi: 10.1038/sj.mp.4001379 PMID: 12931206
  50. Andersen K, Launer LJ, Dewey ME, et al. Gender differences in the incidence of AD and vascular dementia: The EURODEM Studies. Neurology 1999; 53(9): 1992-7. doi: 10.1212/WNL.53.9.1992 PMID: 10599770
  51. Zhu H, Ding Q. Lower expression level of two RAGE alternative splicing isoforms in Alzheimer’s disease. Neurosci Lett 2015; 597: 66-70. doi: 10.1016/j.neulet.2015.04.032 PMID: 25912778
  52. Fu RH, Liu SP, Huang SJ, et al. Aberrant alternative splicing events in Parkinson’s disease. Cell Transplant 2013; 22(4): 653-61. doi: 10.3727/096368912X655154 PMID: 23127794
  53. Hoyer W, Cherny D, Subramaniam V, Jovin TM. Impact of the acidic C-terminal region comprising amino acids 109-140 on α-synuclein aggregation in vitro. Biochemistry 2004; 43(51): 16233-42. doi: 10.1021/bi048453u PMID: 15610017
  54. Brody KM, Taylor JM, Wilson GR, Delatycki MB, Lockhart PJ. Regional and cellular localisation of Parkin Co-Regulated Gene in developing and adult mouse brain. Brain Res 2008; 1201: 177-86. doi: 10.1016/j.brainres.2008.01.050 PMID: 18295750
  55. Wilson GR, Wang HX, Egan GF, et al. Deletion of the Parkin co-regulated gene causes defects in ependymal ciliary motility and hydrocephalus in the quakingviable mutant mouse. Hum Mol Genet 2010; 19(8): 1593-602. doi: 10.1093/hmg/ddq031 PMID: 20106870
  56. Gwozdzinska P. Hypercapnia impairs ENaC cell surface expression and function by promoting phosphorylation and polyubiquitination of ENaC beta-subunit in alveolar epithelial cells. Doctoral dissertation, Dissertation, Gießen, Justus-Liebig-Universität 2018.
  57. Gazit E. The "Correctly Folded" state of proteins: is it a metastable state? Angew Chem Int Ed 2002; 41(2): 257-9. doi: 10.1002/1521-3773(20020118)41:23.0.CO;2-M PMID: 12491403
  58. Perczel A, Hudáky P, Pálfi VK. Dead-end street of protein folding: thermodynamic rationale of amyloid fibril formation. J Am Chem Soc 2007; 129(48): 14959-65. doi: 10.1021/ja0747122 PMID: 17997554
  59. Xue WF, Homans SW, Radford SE. Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proc Natl Acad Sci 2008; 105(26): 8926-31. doi: 10.1073/pnas.0711664105 PMID: 18579777
  60. Knowles TPJ, Waudby CA, Devlin GL, et al. An analytical solution to the kinetics of breakable filament assembly. Science 2009; 326(5959): 1533-7. doi: 10.1126/science.1178250 PMID: 20007899
  61. Buell AK, Dhulesia A, White DA, Knowles TPJ, Dobson CM, Welland ME. Detailed analysis of the energy barriers for amyloid fibril growth. Angew Chem Int Ed 2012; 51(21): 5247-51. doi: 10.1002/anie.201108040 PMID: 22489083
  62. Jarrett JT, Lansbury PT Jr. Amyloid fibril formation requires a chemically discriminating nucleation event: studies of an amyloidogenic sequence from the bacterial protein OsmB. Biochemistry 1992; 31(49): 12345-52. doi: 10.1021/bi00164a008 PMID: 1463722
  63. Törnquist M, Michaels TCT, Sanagavarapu K, et al. Secondary nucleation in amyloid formation. Chem Commun 2018; 54(63): 8667-84. doi: 10.1039/C8CC02204F PMID: 29978862
  64. Linse S. Monomer-dependent secondary nucleation in amyloid formation. Biophys Rev 2017; 9(4): 329-38. doi: 10.1007/s12551-017-0289-z PMID: 28812278
  65. Li D, Kaner RB. How nucleation affects the aggregation of nanoparticles. J Mater Chem 2007; 17(22): 2279-82. doi: 10.1039/b700699c
  66. Librizzi F, Rischel C. The kinetic behavior of insulin fibrillation is determined by heterogeneous nucleation pathways. Protein Sci 2005; 14(12): 3129-34. doi: 10.1110/ps.051692305 PMID: 16322584
  67. Camino JD, Gracia P, Chen SW, et al. The extent of protein hydration dictates the preference for heterogeneous or homogeneous nucleation generating either parallel or antiparallel β-sheet α-synuclein aggregates. Chem Sci 2020; 11(43): 11902-14. doi: 10.1039/D0SC05297C PMID: 33520152
  68. Wang C, Shah N, Thakur G, Zhou F, Leblanc RM. α-Synuclein in α-helical conformation at air–water interface: implication of conformation and orientation changes during its accumulation/aggregation. Chem Commun 2010; 46(36): 6702-4. doi: 10.1039/c0cc02098b PMID: 20714568
  69. Kakio A, Nishimoto S, Yanagisawa K, Kozutsumi Y, Matsuzaki K. Interactions of amyloid β-protein with various gangliosides in raft-like membranes: importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid. Biochemistry 2002; 41(23): 7385-90. doi: 10.1021/bi0255874 PMID: 12044171
  70. Flach TL, Ng G, Hari A, et al. Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nat Med 2011; 17(4): 479-87. doi: 10.1038/nm.2306 PMID: 21399646
  71. Dorsey MP, Nguelifack BM, Yates EA. Colorimetric detection of mutant β-Amyloid(1–40) membrane-active aggregation with biosensing vesicles. ACS Appl Bio Mater 2019; 2(11): 4966-77. doi: 10.1021/acsabm.9b00694 PMID: 35021496
  72. Pronchik J, He X, Giurleo JT, Talaga DS. In vitroformation of amyloid from α-synuclein is dominated by reactions at hydrophobic interfaces. J Am Chem Soc 2010; 132(28): 9797-803. doi: 10.1021/ja102896h PMID: 20578692
  73. Necula M, Chirita CN, Kuret J. Rapid anionic micelle-mediated α-synuclein fibrillization in vitro. J Biol Chem 2003; 278(47): 46674-80. doi: 10.1074/jbc.M308231200 PMID: 14506232
  74. Galvagnion C, Brown JWP, Ouberai MM, et al. Chemical properties of lipids strongly affect the kinetics of the membrane-induced aggregation of α-synuclein. Proc Natl Acad Sci 2016; 113(26): 7065-70. doi: 10.1073/pnas.1601899113 PMID: 27298346
  75. Ambadipudi S, Biernat J, Riedel D, Mandelkow E, Zweckstetter M. Liquid–liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau. Nat Commun 2017; 8(1): 275. doi: 10.1038/s41467-017-00480-0 PMID: 28819146
  76. Babinchak WM, Haider R, Dumm BK, et al. The role of liquid–liquid phase separation in aggregation of the TDP-43 low-complexity domain. J Biol Chem 2019; 294(16): 6306-17. doi: 10.1074/jbc.RA118.007222 PMID: 30814253
  77. Beckmann ND. Multiscale Approaches to Complex Human Diseases. Doctoral dissertation, Icahn School of Medicine at Mount Sinai 2018.
  78. Alberti S, Dormann D. Liquid-liquid phase separation in disease. Annu Rev Genet 2019; 53(1): 171-94. doi: 10.1146/annurev-genet-112618-043527 PMID: 31430179
  79. Grossberg GT, Manes F, Allegri RF, et al. The safety, tolerability, and efficacy of once-daily memantine (28 mg): a multinational, randomized, double-blind, placebo-controlled trial in patients with moderate-to-severe Alzheimer’s disease taking cholinesterase inhibitors. CNS Drugs 2013; 27(6): 469-78. doi: 10.1007/s40263-013-0077-7 PMID: 23733403
  80. Littlejohns TJ, Henley WE, Lang IA, et al. Vitamin D and the risk of dementia and Alzheimer disease. Neurology 2014; 83(10): 920-8. doi: 10.1212/WNL.0000000000000755 PMID: 25098535
  81. Gupta PP, Pandey RD, Jha D, Shrivastav V, Kumar S. Role of traditional nonsteroidal anti-inflammatory drugs in Alzheimer’s disease: A meta-analysis of randomized clinical trials. Am J Alzheimers Dis Other Demen 2015; 30(2): 178-82. doi: 10.1177/1533317514542644 PMID: 25024454
  82. Lee LK, Shahar S, Chin AV, Yusoff NAM. Docosahexaenoic acid-concentrated fish oil supplementation in subjects with mild cognitive impairment (MCI): a 12-month randomised, double-blind, placebo-controlled trial. Psychopharmacology (Berl) 2013; 225(3): 605-12. doi: 10.1007/s00213-012-2848-0 PMID: 22932777
  83. Bo Y, Zhang X, Wang Y, et al. The n-3 polyunsaturated fatty acids supplementation improved the cognitive function in the chinese elderly with mild cognitive impairment: A double-blind randomized controlled trial. Nutrients 2017; 9(1): 54. doi: 10.3390/nu9010054 PMID: 28075381
  84. Gorelick PB, Furie KL, Iadecola C, et al. Defining optimal brain health in adults: A Presidential Advisory From the American Heart Association/American Stroke Association. Stroke 2017; 48(10): e284-303. doi: 10.1161/STR.0000000000000148 PMID: 28883125
  85. Bateman RJ, Xiong C, Benzinger TLS, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 2012; 367(9): 795-804. doi: 10.1056/NEJMoa1202753 PMID: 22784036
  86. Pooler AM, Polydoro M, Wegmann S, Nicholls SB, Spires-Jones TL, Hyman BT. Propagation of tau pathology in Alzheimer’s disease: Identification of novel therapeutic targets. Alzheimers Res Ther 2013; 5(5): 49. doi: 10.1186/alzrt214 PMID: 24152385
  87. Salloway S, Sperling R, Fox NC, et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 2014; 370(4): 322-33. doi: 10.1056/NEJMoa1304839 PMID: 24450891
  88. Singh A, Ansari VA, Mahmood T, Ahsan F, Wasim R. Neurodegeneration: Microglia: Nf-kappab signaling pathways. Drug Res 2022; 72(9): 496-9. doi: 10.1055/a-1915-4861 PMID: 36055286
  89. Singh A, Ansari VA, Mahmood T, Ahsan F, Wasim R. Dendrimers: A neuroprotective lead in alzheimer disease: A review on its synthetic approach and applications. Drug Res 2022; 72(8): 417-23. doi: 10.1055/a-1886-3208 PMID: 35931069
  90. Greenamyre JT. The role of glutamate in neurotransmission and in neurologic disease. Arch Neurol 1986; 43(10): 1058-63. doi: 10.1001/archneur.1986.00520100062016 PMID: 2428340
  91. Doody RS, Thomas RG, Farlow M, et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 2014; 370(4): 311-21. doi: 10.1056/NEJMoa1312889 PMID: 24450890
  92. Honig LS, Vellas B, Woodward M, et al. Trial of solanezumab for mild dementia due to Alzheimer’s Disease. N Engl J Med 2018; 378(4): 321-30. doi: 10.1056/NEJMoa1705971 PMID: 29365294
  93. Vassar R. BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease. Alzheimers Res Ther 2014; 6(9): 89. doi: 10.1186/s13195-014-0089-7 PMID: 25621019
  94. Kennedy ME, Stamford AW, Chen X, et al. The BACE1 inhibitor verubecestat (MK-8931) reduces CNS β-amyloid in animal models and in Alzheimer’s disease patients. Sci Transl Med 2016; 8(363): 363ra150. doi: 10.1126/scitranslmed.aad9704 PMID: 27807285
  95. Perry D, Sperling R, Katz R, et al. Building a roadmap for developing combination therapies for Alzheimer’s disease. Expert Rev Neurother 2015; 15(3): 327-33. doi: 10.1586/14737175.2015.996551 PMID: 25708309
  96. Pedersen JT, Sigurdsson EM. Tau immunotherapy for Alzheimer’s disease. Trends Mol Med 2015; 21(6): 394-402. doi: 10.1016/j.molmed.2015.03.003 PMID: 25846560
  97. Panza F, Solfrizzi V, Seripa D, et al. Tau-based therapeutics for Alzheimer’s disease: Active and passive immunotherapy. Immunotherapy 2016; 8(9): 1119-34. doi: 10.2217/imt-2016-0019 PMID: 27485083
  98. Novak P, Schmidt R, Kontsekova E, et al. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: A randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol 2017; 16(2): 123-34. doi: 10.1016/S1474-4422(16)30331-3 PMID: 27955995
  99. Butterworth RF, Héroux M. Effect of pyrithiamine treatment and subsequent thiamine rehabilitation on regional cerebral amino acids and thiamine-dependent enzymes. J Neurochem 1989; 52(4): 1079-84. doi: 10.1111/j.1471-4159.1989.tb01850.x PMID: 2564421
  100. Do Carmo S, Cuello A. Modeling Alzheimer’s disease in transgenic rats. Mol Neurodegener 2013; 8(1): 37. doi: 10.1186/1750-1326-8-37 PMID: 24161192
  101. Carter J, Thrasher S, Thornicroft G. Cognitive impairment and clozapine. Br J Psychiatry 1994; 164(1): 132-3. doi: 10.1192/bjp.164.1.132b PMID: 8137103
  102. Chandler MJ, DeLeo J, Carney JM. An unanesthetized-gerbil model of cerebral ischemia-induced behavioral changes. J Pharmacol Methods 1985; 14(2): 137-46. doi: 10.1016/0160-5402(85)90051-8 PMID: 4033141
  103. Wei G, Nie H. β-Asarone prevents autophagy and synaptic loss by reducing 941 ROCK expression in asenescence-accelerated prone 8 mice. Brain Res 1552; 942: 41-54.
  104. Chui DH, Tanahashi H, Ozawa K, et al. Transgenic mice with Alzheimer presenilin 1 mutations show accelerated neurodegeneration without amyloid plaque formation. Nat Med 1999; 5(5): 560-4. doi: 10.1038/8438 PMID: 10229234
  105. Citron M, Westaway D, Xia W, et al. Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice. Nat Med 1997; 3(1): 67-72. doi: 10.1038/nm0197-67 PMID: 8986743
  106. Clandinin MT, Cheema S, Field CJ, Baracos VE. Dietary lipids influence insulin action. Ann N Y Acad Sci 1993; 683(1 Dietary Lipid): 151-63. doi: 10.1111/j.1749-6632.1993.tb35701.x PMID: 8352437
  107. Collier TJ, Gash DM, Sladek JR Jr. Transplantation of norepinephrine neurons into aged rats improves performance of a learned task. Brain Res 1988; 448(1): 77-87. doi: 10.1016/0006-8993(88)91103-1 PMID: 3390719
  108. de Souza Silva MA, Lenz B, Rotter A, et al. Neurokinin3 receptor as a target to predict and improve learning and memory in the aged organism. Proc Natl Acad Sci 2013; 110(37): 15097-102. doi: 10.1073/pnas.1306884110 PMID: 23983264
  109. Desrumaux C, Pisoni A, Meunier J, et al. Increased amyloid-β peptide-induced memory deficits in phospholipid transfer protein (PLTP) gene knockout mice. Neuropsychopharmacology 2013; 38(5): 817-25. doi: 10.1038/npp.2012.247 PMID: 23303044
  110. Dhingra D, Parle M, Kulkarni SK. Effect of combination of insulin with dextrose, D (-) fructose and diet on learning and memory in mice. Indian J Pharmacol 2003; 35(3): 151-6.
  111. Bilkei-Gorzo A. Genetic mouse models of brain ageing and Alzheimer’s disease. Pharmacol Ther 2014; 142(2): 244-57. doi: 10.1016/j.pharmthera.2013.12.009 PMID: 24362083
  112. Bhattacharya SK, Kumar A, Jaiswal AK. Effect of Mentat®, a herbal formulation, on experimental models of Alzheimer’s disease and central cholinergic markers in rats. Fitoterapia 1995; 66(3): 216-22.
  113. Bales KR, Liu F, Wu S, et al. Human APOE isoform-dependent effects on brain β-amyloid levels in PDAPP transgenic mice. J Neurosci 2009; 29(21): 6771-9. doi: 10.1523/JNEUROSCI.0887-09.2009 PMID: 19474305
  114. Fisher A, Hanin I. Potential animal models for senile dementia of Alzheimer’s type, with emphasis on AF64A-induced cholinotoxicity. Annu Rev Pharmacol Toxicol 1986; 26(1): 161-81. doi: 10.1146/annurev.pa.26.040186.001113 PMID: 3087271
  115. Flood JF, Morley JE. Learning and memory in the SAMP8 mouse. Neurosci Biobehav Rev 1998; 22(1): 1-20. doi: 10.1016/S0149-7634(96)00063-2 PMID: 9491937
  116. Ganguly R, Guha D. Alteration of brain monoamines & EEG wave pattern in rat model of Alzheimer’s disease & protection by Moringa oleifera. Indian J Med Res 2008; 128(6): 744-51. PMID: 19246799
  117. Ghribi O, Golovko MY, Larsen B, Schrag M, Murphy EJ. Retracted: Deposition of iron and β‐amyloid plaques is associated with cortical cellular damage in rabbits fed with long‐term cholesterol‐enriched diets. J Neurochem 2006; 99(2): 438-49. doi: 10.1111/j.1471-4159.2006.04079.x PMID: 17029598
  118. Gong CX, Liu F, Grundke-Iqbal I, Iqbal K. Dysregulation of protein phosphorylation/dephosphorylation in Alzheimer’s disease: A therapeutic target. J Biomed Biotechnol 2006; 2006(3): 1-11. doi: 10.1155/JBB/2006/31825 PMID: 17047304
  119. Hu ZY, Liu G, Cheng XR, et al. JD-30, an active fraction extracted from Danggui–Shaoyao–San, decreases β-amyloid content and deposition, improves LTP reduction and prevents spatial cognition impairment in SAMP8 mice. Exp Gerontol 2012; 47(1): 14-22. doi: 10.1016/j.exger.2011.09.009 PMID: 22063923

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers