Characterization of New Experimental Materials for Hemodialysis Membranes and Simulation of Urea Dialysis Process with Their Use

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The acute shortage of hemodialysis cartridges in Russia, caused by restrictions imposed by the European Union on the supply of high-tech equipment, has led to the nessesity for the production of domestic inexpensive and effective membranes for hemodialysis. In this work, experimental membranes based on polysulfone were obtained and their characterization was carried out. The influence of the blowing agent (polyethylene glycol and polyvinylpyrrolidone) on the structure and transport properties of the obtained membranes was compared. A non-steady state one-dimensional mathematical model of urea dialysis is proposed. A special feature of the model is the accounting the membrane microheterogeneous structure. A comparison of the modeling results with experimental data on the urea concentration time dependences in the dialysate compartment of the dialysis system allows us to conclude that the model adequately describes the system under study. A theoretical assessment of the obtained membrane material efficiency under conditions corresponding to the hemodialysis process, as well as a comparison of urea removal performance with Nephral ST hemodialysis cartridges from Baxter (a company widely represented on the world market) was carried out. It was shown that a polysulfone-based membrane obtained using polyvinylpyrrolidone demonstrates results slightly inferior to those of commercially produced cartridges, which indicates its promise for the production of hollow fiber membranes for hemodialysis cartridges.

About the authors

A. E. Kozmai

Kuban State University

Author for correspondence.
Email: kozmay@yandex.ru
Russian Federation, 350040, Krasnodar

M. V. Porozhnyy

Kuban State University

Email: kozmay@yandex.ru
Russian Federation, 350040, Krasnodar

V. V. Gil

Kuban State University

Email: kozmay@yandex.ru
Russian Federation, 350040, Krasnodar

D. S. Lopatin

JSC “NSK”

Email: kozmay@yandex.ru
Russian Federation, 353204, Dinskaya

A. V. Rodichenko

JSC “NSK”

Email: kozmay@yandex.ru
Russian Federation, 353204, Dinskaya

I. V. Voroshilov

JSC “KKZ”

Email: kozmay@yandex.ru
Russian Federation, 353204, Dinskaya

V. V. Nikonenko

Kuban State University

Email: kozmay@yandex.ru
Russian Federation, 350040, Krasnodar

References

  1. GBD Chronic Kidney Disease Collaboration // The Lancet. 2020. V. 395. № 10225. P. 709–733.
  2. Сигитова О.Н. //Вестник современной клинической медицины. 2008. Т. 1. № 1. С. 83–87.
  3. Levey A.S., Coresh J., Balk E., Kausz A.T., Levin A., Steffes M.W., Hogg R.J., Perrone R.D., Lau J., Eknoyan G. // Ann. Intern. Med. 2003. V. 139, № 2, P. 137–147.
  4. Готье С.В., Хомяков С.М. // Вестник трансплантологии и искусственных органов. 2023. Т. 25. № 3. С. 8–30.
  5. Friedrich J.O., Wald R., Bagshaw S.M., Burns K.E., Adhikari N.K. // Crit Care. 2012. V. 16. № 4. Art. № R146.
  6. Locatelli F., Carfagna F., Del Vecchio L., La Milia V. // Nephrol. Dial. Transplant. 2018. V. 33. № 11. P. 1896–1904.
  7. Giuliani A., Karopadi A.N., Prieto-Velasco M., Manani S.M., Crepaldi C., Ronco C. // Perit Dial Int. 2017. V. 37. № 5. P. 503–508.
  8. Chuasuwan A., Pooripussarakul S., Thakkinstian A., Ingsathit A., Pattanaprateep O // Health Qual. Life Outcomes. 2020. V. 18. № 1. Art. № 191.
  9. Румянцева Е.И. // Проблемы стандартизации в здравоохранении. 2021. № 1–2. С. 41–49.
  10. Smye S.W., Clayton R.H. // Med Eng Phys. 2002. V. 24. № 9. P. 565–574.
  11. Jaffrin M.Y., Gupta B.B., Malbrancq J.M. // J. Biomech. Eng. 1981. V. 103. № 4. P. 261–266.
  12. Akcahuseyin E., Vincent H.H., van Ittersum F.J., van Duyl W.A., Schalekamp M.A.D.H. // Comput Meth Programs Biomed. 1990. V. 31. P. 215–224.
  13. Vincent H.H., van Ittersum F.J., Akcahuseyin E., Vos M.C., van Duyl W.A., Schalekamp M.A.D.H. // Blood Purif. 1990. V. 8. № 3. P. 149–159.
  14. Jaffrin M.Y., Ding L.H., Laurent J.M. // J. Biomech. Eng. 1990. V. 112. № 2. P. 212–219.
  15. Waniewski J., Lucjanek P., Werynski A. // Artif. Organs. 1993. V. 17. № 1. P. 3–7.
  16. Waniewski J., Lucjanek P., Werynski A. // Artif. Organs. 1994. V. 18. № 12. P. 933–936.
  17. Legallais C., Catapano G., von Harten B., Baurmeister U. // J. Membr. Sci. 2000. V. 168. P. 3–15.
  18. Ding W., Li W., Sun S., Zhou X., Hardy P.A., Ahmad S., Gao D. // Artif. Organs. 2015. V. 39. № 6. P. E79–E89.
  19. Cancilla N., Gurreri L., Marotta G., Ciofalo M., Cipollina A., Tamburini A., Micale G. // J. Membr. Sci. 2022. V. 646. Art. № 120219.
  20. Pstras L., Stachowska-Pietka J., Debowska M., Pietribiasi M., Poleszczuk J., Waniewski J. // Biocybern Biomed Eng. 2022. V. 42. № 1. P. 60–78.
  21. Donato D., Boschetti-de-Fierro A., Zweigart C., Kolb M., Eloot S., Storr M., Krause B., Leypoldt K., Segers P. // J. Membr. Sci. 2017. V. 541. P. 519–528.
  22. Eloot S., Vierendeels J., Verdonck P. // Comput Methods Biomech Biomed Engin. 2006. V. 9. № 6. P. 363–370.
  23. Rambod E., Beizai M., Rosenfeld M. // Biomed. Eng. Online. 2010. V. 9. Art. № 21.
  24. Patil G.C. Doctor Blade: A Promising Technique for Thin Film Coating. In: Sankapal B.R., Ennaoui A., Gupta R.B., Lokhande C.D. (eds) Simple Chemical Methods for Thin Film Deposition. Singapore: Springer, 2023.
  25. Карпенко Л.В., Демина О.А., Дворкина Г.А., Паршиков С.Б., Ларше К., Оклер Б., Березина Н.П. // Электрохимия. 2001. Т. 37. № 3. С. 328–335. [Karpenko L.V., Demina O.A., Dvorkina G.A., Parshikov S.B., Larchet C., Auclair B., Berezina N.P. // Russ. J. Electrochem. 2001. V. 37. № 3. P. 287–293.]
  26. Письменская Н.Д., Невакшенова Е.Е., Никоненко В.В. // Мембраны и мембранные технологии. 2018. Т. 8. № 3. С. 147–156. [Pismenskaya N.D., Nevakshenova E.E., Nikonenko V.V. // Pet. Chem. 2018. V. 58. P. 465–473.]
  27. Newman J., Thomas-Alyea K.E. Electrochemical Systems. NJ: John Wiley & Sons, Inc., 2004.
  28. Басова Е.М., Буланова М.А., Иванов В.М. // Вестн. Моск. ун-та. Сер. 2. Химия. 2011. Т. 52. № 6. С. 419–425.
  29. Lide D.R. Handbook of Chemistry and Physics. Boca Raton, FL: CRC Press, 2005.
  30. Mareev S.A., Evdochenko E., Wessling M., Kozaderova O.A., Niftaliev S.I., Pismenskaya N.D., Nikonenko V.V. // J. Membr. Sci. 2020. V. 603. P. 118010.
  31. Larchet C., Nouri S., Auclair B., Dammak L., Nikonenko V. // Adv. Colloid Interface Sci. 2008. V. 139. P. 45–61.
  32. Mareev S.A., Nikonenko V.V. // Electrochim. Acta. 2012. V. 81. P. 268–274.
  33. Zabolotsky V.I., Nikonenko V.V. // J. Membr. Sci. 1993. V. 79. P. 181–198.
  34. Salmeron-Sanchez I., Asenjo-Pascual J., Avilés-Moreno J.R., Ocón P. // J. Memb. Sci. 2022. V. 659. P. 120771–120783.
  35. Kozmai A.E., Nikonenko V.V., Zyryanova S., Pismenskaya N.D., Dammak L., Baklouti L. // J. Memb. Sci. 2019. V. 590. P. 117291−117304.
  36. Mackie J.S., Meares P. // Proc. R. Soc. A: Math. Phys. Eng. Sci. 1955. V. 232. № 1191. P. 498−509.
  37. Kozmai A., Porozhnyy M., Ruleva V., Gorobchenko A., Pismenskaya N., Nikonenko V. // Membranes. 2023. V. 13. Art. № 103.
  38. https://renalcare.baxter.com/nephral-datasheet.
  39. Miyasaka T., Sakai K. // J Artif Organs. 2023. V. 26. P. 1–11.
  40. Ouseph R., Hutchison C.A., Ward R.A. // Nephrol. Dial. Transplant. 2008. V. 23. P. 1704–1712.
  41. Collins M.C., Ramirez W.F. // J. Phys. Chem. 1979. V. 83. № 17. P. 2294–2301.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences