Interlayer resistance of bilayer membrane to gas permeation
- Authors: Ugrozov V.V.1
-
Affiliations:
- Financial University under the Government of the Russian Federation
- Issue: Vol 14, No 1 (2024)
- Pages: 13-18
- Section: Articles
- URL: https://jdigitaldiagnostics.com/2218-1172/article/view/674257
- DOI: https://doi.org/10.31857/S2218117224010028
- EDN: https://elibrary.ru/OKZCGC
- ID: 674257
Cite item
Abstract
To describe gas transfer through a bilayer membrane with a thin selective layer on the surface of a highly permeable gutter layer, it was first proposed to take into account the interlayer resistance arising at the boundary of this membrane layers and a model of gas transfer through a bilayer membrane was developed. An analytical expressions for permeability and selectivity of such a membrane taking into account this resistance is obtained. It is shown that the interlayer resistance can noticeably affect the transport characteristics of the membrane. It is found that even in the case of small diffusion resistance to gas permeation of the gutter layer, its sorption and kinetic parameters influence the permeability and selectivity of the membrane as a whole.
Full Text

About the authors
V. V. Ugrozov
Financial University under the Government of the Russian Federation
Author for correspondence.
Email: vugr@rambler.ru
Russian Federation, 125993, Moscow, Leningradsky pr., 49
References
- Апель П.Ю., Бобрешова О.В., Волков А.В., Волков В.В.,Никоненко В.В., Стенина И.А., Филиппов А.Н., Ямпольский Ю.П., Ярославцев А.Б. // Мембраны и мембранные технологии. 2019. Т. 9. С. 59.
- Xie K., Fu Q., Qiao G.G., Webley P.A. // J. Membr. Sci.2019. V. 572. P. 38.
- Liang C.Z., Liu J.T., Lai J.-Y., Chung T.-S. // J. Membr.Sci. 2018. V. 563. P. 93.
- Verry М.B., Anderson M., He N., Kweon H., Ji C., Xue S.,Rao E., Lee C., Lin C.-W., Chen D., Jun D., Sant G.,Kaner R.B. // Nano Lett. 2019. V. 19. P. 5036.
- Liang C.Z., Chung T.-S., Lai J.-Y. // Prog. Polym. Sci. 2019. V. 97. P. 101–141.
- Selyanchyn R., Ariyoshi M., Fujikawa S. // Membranes. 2018. V. 8. P. 121.
- Ma С., Wang М., Wang Z., Gao M., Wang J. // Journal of CO2 Utilization. 2020. V.42. 101296.
- Ming Y., Foster A.B., Alshurafa M., Luque- Alled J.M., Gorgojo P.,Kentish S.E., Scholes C. A., Budd P. M. // J. Membr. Sci. 2019.V. 679. N5. P.121697.
- Zhao J., Hea G., Liua G., Pana F., Wua H., Jinc W., Jianga Z. // Progress in Polymer Sci. 2018. V. 80. P. 125.
- Borisov I., Bakhtin D., Luque-Alled J.M., Rybakova A., Makarova V., Foster A.B., Harrison W.J., Volkov V., Polevaya V., Gorgojo P., Prestat E., Budd P.M., Volkov A. // J. Mater. Chem. A. 2019. V. 7. P. 6417.
- Jiang L.Y, Song Z.W. // J. Polym Res . 2011. V. 18. P. 2505.
- Henis J.M.S., Tripodi M.K. // J. Membr. Sci. 1981.V. 8. P. 233.
- Dettori R., Melis C., Cartoixà X., Rurali R, Colombo L. // Advances in Physics: X. 2016. V. 1. N2. P. 246.
- Chen J., Xu X., Zhou J., Li B. // Rev. Mod. Phys. 2022. V. 94. 025002
- Weng C., Li J., Lai J., Liu J., Wang H. // Polymers. 2020. V.12. № 10. P. 2409.
- Ma D., Yuheng Xing Y., Zhang L. // J. Phys.Cond. Matter. 2022.V 35. № 5. 053001.
- Li X., Park W.,Wang Y., Chen Y., Ruan X. // J. Appl. Phys. 2019. V. 125, 045302 .
- Persson B.N.J. // Tribology Letters. 2022. V. 70. № 3. P. 88.
Supplementary files
