The role of aquatic ecosystems as a source of omega-3 polyunsaturated fatty acids for the sand lizard Lacerta agilis (Linnaeus, 1758), inhabiting a shore biotope

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The composition and content of fatty acids of the sand lizard (Lacerta agilis) and its potential food objects in the shore and steppe biotopes were studied. For the first time, it was established that the content of long-chain omega-3 polyunsaturated fatty acids, primarily eicosapentaenoic acid (EPA), significantly increases in the tissues of lizards from a shore biotope during the period of emergence of amphibious insects from the nearby salt Lake Shira. Among all the food sources of lizards, the highest EPA content was found in chironomids imago. The content of docosahexaenoic acid (DHA) in the muscles of the lizards was also high, although this acid was not detected in the invertebrates that the lizards consumed. In this regard, it has been suggested that the sand lizard is able to biosynthesize DHA from biochemical precursors contained in food.

Full Text

Restricted Access

About the authors

O. S. Dimenko

Siberian Federal University

Email: arudchenko@sfu-kras.ru
Russian Federation, Krasnoyarsk

A. E. Rudchenko

Siberian Federal University; Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”

Author for correspondence.
Email: arudchenko@sfu-kras.ru

Institute of Biophysics of Siberian Branch of Russian Academy of Sciences

Russian Federation, Krasnoyarsk; Krasnoyarsk

E. V. Borisova

Siberian Federal University

Email: arudchenko@sfu-kras.ru
Russian Federation, Krasnoyarsk

A. D. Tupikova

Siberian Federal University

Email: arudchenko@sfu-kras.ru
Russian Federation, Krasnoyarsk

N. N. Sushchik

Siberian Federal University; Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”

Email: arudchenko@sfu-kras.ru

Corresponding Member of the RAS, Institute of Biophysics of Siberian Branch of Russian Academy of Sciences

Russian Federation, Krasnoyarsk; Krasnoyarsk

References

  1. Гладышев М.И. Незаменимые полиненасыщенные жирные кислоты и их пищевые источники для человека // Журнал Сибирского федерального университета. Биология. 2012. Т. 5. №4. С. 352–386.
  2. Gladyshev M.I., Sushchik N.N., Makhutova O.N. Production of EPA and DHA in aquatic ecosystems and their transfer to the land // Prostaglandins & Other Lipid Mediators. 2013 V. 107. P. 117–126.
  3. Muehlbauer J.D., Collins S.F., Doyle M.W., et al. How wide is a stream? Spatial extent of the potential “stream signature” in terrestrial food webs using meta‐analysis // Ecology. 2014. V. 95. №11. P. 44–55.
  4. Sabo J.L., Power M.E. River-watershed exchange: effect of riverine subsidies on riparian lizards and their terrestrial prey // Ecology. 2002. V. 83. № 7. P. 1860–1869.
  5. Gladyshev M.I., Makhrov A.A., Baydarov I.V., et al. Fatty acid composition and contents of fish of genus Salvelinus from natural ecosystems and aquaculture // Biomolecules. 2022. V. 12(1). P. 144.
  6. Vitkovskaya I.A., Borisova E.V., Sushchik N.N. Dispersal of Midges (Chironomidae, Diptera) on terrestrial area after the emergence from saline Lake Shira // Journal of Siberian Federal University. Biology. 2019. V. 12. №2. P. 216–226.
  7. Demina I.A., Shulepina S.P., Ageev A.V., Sushchik N.N. Characterization of zoobenthos and export of biomass and polyunsaturated fatty acids due to emergence of midges (Diptera, Chironomidae) from three saline lakes of South Siberia // Journal of Siberian Federal University. Biology. 2022. V. 15. №4. P. 507–528.
  8. Chari L.D., Richoux N.B., Villet M.H. Dietary fatty acids of spiders reveal spatial and temporal variations in aquatic-terrestrial linkages // Food Webs. 2020. V. 24. e00152.
  9. Fritz K.A., Kirschman L.J., McCay et al. Subsidies of essential nutrients from aquatic environments correlate with immune function in terrestrial consumers // Freshwater Science. 2017. V. 36. №4. P. 893–900.
  10. Castro L.F.C., Tocher D.R., Monroig O. Long-chain polyunsaturated fatty acid biosynthesis on chordates: Insights into the evolution of Fads and Elovl gene repertoire // Progress in Lipid Research. 2016. V. 62. P. 25–40.
  11. Davis‐Bruno K., Tassinari M. S. Essential fatty acid supplementation of DHA and ARA and effects on neurodevelopment across animal species: a review of the literature // Birth Defects Research Part B: Developmental and Reproductive Toxicology. 2011. V. 92. №3. P. 240–250.
  12. Speake B.K., Thompson M.B. Comparative aspects of yolk lipid utilisation in birds and reptiles // Poult Avian Biol Rev. 1999. V. 10. P. 181–211.
  13. Walzem R.L. Lipoproteins and the laying hen: form follows function // Poult. Avian Biol. 1996. Rev. 7. P. 31–64.
  14. Дгебуадзе Ю. Ю., Неймарк Л. А., Башинский И. В., и др. Роль обыкновенного ужа Natrix natrix (Reptilia, Colubridae) в переносе полиненасыщенных жирных кислот из водных экосистем на сушу // Доклады Российской академии наук. Науки о жизни. 2023. Т. 513. №1. С. 599–603.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. EPA and DHA content (in mg/g wet weight) in muscle tissue of the sand lizard (Lacerta agilis) from near-water and steppe biotopes. Values ​​marked with one letter do not have reliable differences in the post-hoc test according to Tukey's HSD test at p ≤ 0.05.

Download (112KB)
3. Fig. 2. Mass fraction (W,%) of food components in the stomachs of the sand lizard (Lacerta agilis) from the near-water and steppe biotopes in the area of ​​Lake Shira.

Download (213KB)

Copyright (c) 2025 Russian Academy of Sciences