Antitumor effect of helium ions with energy of 320 MeV/ion during irradiation of Ehrlich ascites carcinoma cells ex vivo
- Authors: Balakin V.E.1, Strelnikova N.S.1, Rozanova O.M.2, Smirnova E.N.2, Belyakova T.A.2,3, Shemyakov A.E.1,4
-
Affiliations:
- Lebedev Physical Institute, Russian Academy of Sciences
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
- Institute for High Energy Physics named by A.A. Logunov of National Research Centre “Kurchatov Institute”
- 2Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
- Issue: Vol 522, No 1 (2025)
- Pages: 351-357
- Section: Articles
- URL: https://jdigitaldiagnostics.com/2686-7389/article/view/686380
- DOI: https://doi.org/10.31857/S2686738925030066
- ID: 686380
Cite item
Abstract
The regularities of tumor induction and growth were studied in mice exposed to a single ex vivo irradiation with a helium ion beam of Ehrlich adenocarcinoma ascites cells (EAC) at doses of 10 Gy and 20 Gy in two positions of the Bragg curve (before the peak and at the peak) in comparison with X-ray radiation at the same doses. It was shown that the frequency of induction and delay in tumor appearance depend on the dose of helium ion irradiation. The following were determined: the time of a fivefold increase in the EAC volume, tumor growth inhibition, tumor growth index (TGI), and increase in life expectancy (ILE) in mice. A decrease in the TGI values and an increase in the ILE values occurred with increasing dose for all types of radiation. The relative biological effectiveness value for helium ions determined by the area under the EAC growth dynamics curves reached a maximum value of 1.8 upon irradiation at the Bragg peak at a dose of 20 Gy.
Keywords
Full Text

About the authors
V. E. Balakin
Lebedev Physical Institute, Russian Academy of Sciences
Email: strelnikova.ns@lebedev.ru
Corresponding Member of the RAS, Physical-Technical Center
Russian Federation, ProtvinoN. S. Strelnikova
Lebedev Physical Institute, Russian Academy of Sciences
Author for correspondence.
Email: strelnikova.ns@lebedev.ru
Physical-Technical Center
Russian Federation, ProtvinoO. M. Rozanova
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Email: strelnikova.ns@lebedev.ru
Russian Federation, Pushchino
E. N. Smirnova
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Email: strelnikova.ns@lebedev.ru
Russian Federation, Pushchino
T. A. Belyakova
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences; Institute for High Energy Physics named by A.A. Logunov of National Research Centre “Kurchatov Institute”
Email: strelnikova.ns@lebedev.ru
Russian Federation, Pushchino; Protvino
A. E. Shemyakov
Lebedev Physical Institute, Russian Academy of Sciences; 2Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Email: strelnikova.ns@lebedev.ru
Physical-Technical Center
Russian Federation, Protvino; PushchinoReferences
- Tommasino F., Scifoni E., Durante M. New Ions for therapy // Int. J. Part. Ther. 2015. Vol. 2. №3. Р. 428–38.
- Mairani A., Mein S., Blakely E., et al. Roadmap: helium ion therapy // Phys Med Biol. 2022. Vol. 67. №15.
- Tessonnier T., Mairani A., Brons S., et al. Helium ions at the heidelberg ion beam therapy center: comparisons between FLUKA Monte Carlo code predictions and dosimetric measurements // Phys Med Biol. 2017. Vol. 62. № 16. Р. 6784–6803.
- Krämer M., Scifoni E., Schuy C., et al. Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality // Med Phys. 2016. Vol. 43. №4. Р. 1995.
- Tessonnier T., Mairani A., Chen W., et al. Proton and helium ion radiotherapy for meningioma tumors: a Monte Carlo-based treatment planning comparison // Radiat Oncol. 2018. Vol. 13. №1. Р. 2.
- Levy R. P., Fabrikant J. I., Frankel K. A., et al. Heavy-charged-particle radiosurgery of the pituitary gland: clinical results of 840 patients // Stereotact Funct Neurosurg. 1991. Vol. 57. №1–2. Р. 22–35.
- Mishra K.K., Quivey J.M., Daftari I.K., et al. Long-term Results of the UCSF-LBNL Randomized Trial: Charged Particle With Helium Ion Versus Iodine-125 Plaque Therapy for Choroidal and Ciliary Body Melanoma // Int J Radiat Oncol Biol Phys. 2015. Vol. 92. №2. Р. 376–383.
- Durante M., Debus J., Loeffler J.S. Physics and biomedical challenges of cancer therapy with accelerated heavy ions // Nat Rev Phys. 2021. Vol. 3. №. 12. P. 777–790.
- Rozanova O.M., Smirnova E.N., Belyakova T.A., et al. Regularities of Induction and Growth of Tumors in Mice upon Irradiation of Ehrlich Carcinoma Cells ex vivo and in vivo with a Pencil Scanning Beam of Protons // Biofizika. 2024. Vol. 69. №.1. P. 183–192.
- Belyakova T.A., Rozanova O.M., Smirnova E.N., et al. Modifying effect of 1-b-D-arabinofuranosylcytosine on the growth of the solid tumor Ehrlich carcinoma in mice under in vivo and ex vivo proton irradiation of cells // Physics of Particles and Nuclei Letters. 2025. Vol. 22. №. 2. P. 477–486.
- Smith J. A., van den Broek F.A., Martorell J.C., et al. Principles and practice in ethical review of animal experiments across Europe: summary of the report of a FELASA working group on ethical evaluation of animal experiments // Lab Anim. 2007. Vol. 41. №2. Р. 143–160.
- Рыжова Н.И., Дерягина В.П., Савлучинская Л.А. Значение модели аденокарциномы Эрлиха в изучении механизмов канцерогенеза, противоопухолевой активности химических и физических факторов // Международный журнал прикладных и фундаментальных исследований. 2019. № 4. С. 220–227.
- Balakin V.E., Belyakova T.A., Rozanova O.M., et al. Anti-tumor Effect of High Doses of Carbon Ions and X-Rays during Irradiation of Ehrlich Ascites Carcinoma Cells ex vivo // Dokl Biochem Biophys. 2023. Vol. 513. № Suppl1. Р. S30–S35.
- Федоренко Б.С. Экспериментальные исследования биологической эффективности ускоренных заряженных частиц релятивистских энергий // Физика элементарных частиц и атомного ядра. 1991. Т. 22. №5. С. 1199–1229.
- Миронов А.Н., Бунатян А.С., Васильев А.Н. ред. Руководство по проведению доклинических исследований лекарственных средств. Часть первая. М.: Гриф и К, 2012.
- Spadinger I., Palcic B. The relative biological effectiveness of 60Co gamma-rays, 55 kVp X-rays, 250 kVp X-rays, and 11 MeV electrons at low doses // Int J Radiat Biol. 1992. Vol. 61. №3. P. 345–353.
- Balakin V.E., Rozanova O.M., Smirnova E.N., et al. Growth Induction of Solid Ehrlich Ascitic Carcinoma in Mice after Proton Irradiation of Tumor Cells ex vivo // Dokl Biochem Biophys. 2023. Vol. 511. №1. Р. 151–155.
- Стуков А.Н., Иванова М.А., Никитин А.К., и др. Индекс роста опухоли как интегральный критерий эффективности противоопухолевой терапии в эксперименте // Вопросы Онкологии. 2001. Т. 47. №5. С. 616–618.
Supplementary files
