Antitumor effect of helium ions with energy of 320 MeV/ion during irradiation of Ehrlich ascites carcinoma cells ex vivo

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The regularities of tumor induction and growth were studied in mice exposed to a single ex vivo irradiation with a helium ion beam of Ehrlich adenocarcinoma ascites cells (EAC) at doses of 10 Gy and 20 Gy in two positions of the Bragg curve (before the peak and at the peak) in comparison with X-ray radiation at the same doses. It was shown that the frequency of induction and delay in tumor appearance depend on the dose of helium ion irradiation. The following were determined: the time of a fivefold increase in the EAC volume, tumor growth inhibition, tumor growth index (TGI), and increase in life expectancy (ILE) in mice. A decrease in the TGI values and an increase in the ILE values occurred with increasing dose for all types of radiation. The relative biological effectiveness value for helium ions determined by the area under the EAC growth dynamics curves reached a maximum value of 1.8 upon irradiation at the Bragg peak at a dose of 20 Gy.

Full Text

Restricted Access

About the authors

V. E. Balakin

Lebedev Physical Institute, Russian Academy of Sciences

Email: strelnikova.ns@lebedev.ru

Corresponding Member of the RAS, Physical-Technical Center

Russian Federation, Protvino

N. S. Strelnikova

Lebedev Physical Institute, Russian Academy of Sciences

Author for correspondence.
Email: strelnikova.ns@lebedev.ru

Physical-Technical Center 

Russian Federation, Protvino

O. M. Rozanova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: strelnikova.ns@lebedev.ru
Russian Federation, Pushchino

E. N. Smirnova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: strelnikova.ns@lebedev.ru
Russian Federation, Pushchino

T. A. Belyakova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences; Institute for High Energy Physics named by A.A. Logunov of National Research Centre “Kurchatov Institute”

Email: strelnikova.ns@lebedev.ru
Russian Federation, Pushchino; Protvino

A. E. Shemyakov

Lebedev Physical Institute, Russian Academy of Sciences; 2Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: strelnikova.ns@lebedev.ru

Physical-Technical Center 

Russian Federation, Protvino; Pushchino

References

  1. Tommasino F., Scifoni E., Durante M. New Ions for therapy // Int. J. Part. Ther. 2015. Vol. 2. №3. Р. 428–38.
  2. Mairani A., Mein S., Blakely E., et al. Roadmap: helium ion therapy // Phys Med Biol. 2022. Vol. 67. №15.
  3. Tessonnier T., Mairani A., Brons S., et al. Helium ions at the heidelberg ion beam therapy center: comparisons between FLUKA Monte Carlo code predictions and dosimetric measurements // Phys Med Biol. 2017. Vol. 62. № 16. Р. 6784–6803.
  4. Krämer M., Scifoni E., Schuy C., et al. Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality // Med Phys. 2016. Vol. 43. №4. Р. 1995.
  5. Tessonnier T., Mairani A., Chen W., et al. Proton and helium ion radiotherapy for meningioma tumors: a Monte Carlo-based treatment planning comparison // Radiat Oncol. 2018. Vol. 13. №1. Р. 2.
  6. Levy R. P., Fabrikant J. I., Frankel K. A., et al. Heavy-charged-particle radiosurgery of the pituitary gland: clinical results of 840 patients // Stereotact Funct Neurosurg. 1991. Vol. 57. №1–2. Р. 22–35.
  7. Mishra K.K., Quivey J.M., Daftari I.K., et al. Long-term Results of the UCSF-LBNL Randomized Trial: Charged Particle With Helium Ion Versus Iodine-125 Plaque Therapy for Choroidal and Ciliary Body Melanoma // Int J Radiat Oncol Biol Phys. 2015. Vol. 92. №2. Р. 376–383.
  8. Durante M., Debus J., Loeffler J.S. Physics and biomedical challenges of cancer therapy with accelerated heavy ions // Nat Rev Phys. 2021. Vol. 3. №. 12. P. 777–790.
  9. Rozanova O.M., Smirnova E.N., Belyakova T.A., et al. Regularities of Induction and Growth of Tumors in Mice upon Irradiation of Ehrlich Carcinoma Cells ex vivo and in vivo with a Pencil Scanning Beam of Protons // Biofizika. 2024. Vol. 69. №.1. P. 183–192.
  10. Belyakova T.A., Rozanova O.M., Smirnova E.N., et al. Modifying effect of 1-b-D-arabinofuranosylcytosine on the growth of the solid tumor Ehrlich carcinoma in mice under in vivo and ex vivo proton irradiation of cells // Physics of Particles and Nuclei Letters. 2025. Vol. 22. №. 2. P. 477–486.
  11. Smith J. A., van den Broek F.A., Martorell J.C., et al. Principles and practice in ethical review of animal experiments across Europe: summary of the report of a FELASA working group on ethical evaluation of animal experiments // Lab Anim. 2007. Vol. 41. №2. Р. 143–160.
  12. Рыжова Н.И., Дерягина В.П., Савлучинская Л.А. Значение модели аденокарциномы Эрлиха в изучении механизмов канцерогенеза, противоопухолевой активности химических и физических факторов // Международный журнал прикладных и фундаментальных исследований. 2019. № 4. С. 220–227.
  13. Balakin V.E., Belyakova T.A., Rozanova O.M., et al. Anti-tumor Effect of High Doses of Carbon Ions and X-Rays during Irradiation of Ehrlich Ascites Carcinoma Cells ex vivo // Dokl Biochem Biophys. 2023. Vol. 513. № Suppl1. Р. S30–S35.
  14. Федоренко Б.С. Экспериментальные исследования биологической эффективности ускоренных заряженных частиц релятивистских энергий // Физика элементарных частиц и атомного ядра. 1991. Т. 22. №5. С. 1199–1229.
  15. Миронов А.Н., Бунатян А.С., Васильев А.Н. ред. Руководство по проведению доклинических исследований лекарственных средств. Часть первая. М.: Гриф и К, 2012.
  16. Spadinger I., Palcic B. The relative biological effectiveness of 60Co gamma-rays, 55 kVp X-rays, 250 kVp X-rays, and 11 MeV electrons at low doses // Int J Radiat Biol. 1992. Vol. 61. №3. P. 345–353.
  17. Balakin V.E., Rozanova O.M., Smirnova E.N., et al. Growth Induction of Solid Ehrlich Ascitic Carcinoma in Mice after Proton Irradiation of Tumor Cells ex vivo // Dokl Biochem Biophys. 2023. Vol. 511. №1. Р. 151–155.
  18. Стуков А.Н., Иванова М.А., Никитин А.К., и др. Индекс роста опухоли как интегральный критерий эффективности противоопухолевой терапии в эксперименте // Вопросы Онкологии. 2001. Т. 47. №5. С. 616–618.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dynamics of solid EAC growth after implantation of irradiated EAC cells with 4He before the peak, at the Bragg peak and RI at doses of 10 Gy (a) and 20 Gy (b). Statistical significance was assessed using Student's t-test, where * – p≤0.05, ** – p≤0.01.

Download (328KB)
3. Fig. 2. Dependence of the magnitude of tumor growth inhibition in mice on the time after implantation of EAC cells irradiated with 4He before and at the Bragg peak and RI at doses of 10 Gy (a) and 20 Gy (b).

Download (342KB)
4. Fig. 3. Tumor growth rate in mice after ex vivo irradiation of tumor cells with 4He and RI at doses of 10 Gy and 20 Gy. Volumes are normalized to the first measured volume (>0.40 cm3). Statistical significance from the control group was assessed using the Mann-Whitney U-test (* – p≤0.05, ** – p≤0.01).

Download (176KB)

Copyright (c) 2025 Russian Academy of Sciences