A point of limited availability of water in soil and its determination

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The point of limited availability of water (PLAW) characterizes the lower boundary of the area of the most productive moisture for plants. The analysis of experimental methods for determining PLAW indicates their labor intensity and low productivity. The aim of the study was to develop a high-performance and accurate method for determining PLAW. 18 samples from various soils were used in the work. To determine the PLAW, a method was proposed in which soil samples were placed in a Schott funnel, moistened with excess water, and then the water was pumped out using a water jet pump. As the water was removed from the sample, the interval between drops falling from the funnel increased. A jump in the intervals between drops was considered an indicator of the end of the experiment. Experiments have shown that the soil moisture content obtained by vacuuming correlates with the values calculated for the lowest soil moisture capacity (according to Dolgov) by 87%. The values of the PLAW obtained by the secant method (according to Voronin) for some of the soil samples do not fall out of the obtained dependence. Using the method, it was shown that soil drying leads to a decrease in the value of the measured PLAW. An explanation of the results from the position of the presence of organomineral gels in soils is proposed.

Texto integral

Acesso é fechado

Sobre autores

G. Fedotov

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: gennadiy.fedotov@gmail.com
Rússia, Moscow

S. Shoba

Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com

Corresponding Member of the RAS

Rússia, Moscow

I. Gorepekin

Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com
Rússia, Moscow

A. Sukharev

Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com
Rússia, Moscow

D. Tarasenko

Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com
Rússia, Moscow

A. Shvarov

Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com
Rússia, Moscow

Z. Tyugai

Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com
Rússia, Moscow

Bibliografia

  1. Еремин Д. И., Шахова О. А. Динамика влажности чернозема, выщелоченного при различных системах обработки под яровую пшеницу в условиях Северного Зауралья // Аграрный вестник Урала. 2010. № 1 (67). С. 38–40.
  2. Шеин Е. В. Курс физики почв. М.: Изд-во Моск. Ун-та, 2005. 430 с.
  3. Novák V., Hlaváčiková H. Applied soil hydrology. Cham, Switzerland: Springer, 2019. 342 p.
  4. Вадюнина А. Ф., Корчагина З. А. Методы исследования физических свойств почв и грунтов. 2-е изд. М., 1973, 1969. 399 с.
  5. Воронин А. Д. Структурно-функциональная гидрофизика почв. М.: Изд-во Моск. Ун-та, 1984. 204 с.
  6. Честнова В. В. Реологические свойства черноземов типичных курской области: взаимосвязь с физическими свойствами и основной гидрофизической характеристикой / Дис. … канд. биол наук: 06.01.03. М., 2017. 116 с.
  7. Методическое руководство по изучению почвенной структуры / Под ред. И. Б. Ревута, А. А. Роде. Л.: Колос, 1969. 528 с.
  8. Шеин Е. В., Архангельская Т. А., Гончаров В. М., Губер А. К., Початкова Т. Н., Сидорова М. А., Смагин А. В., Умарова А. Б. Полевые и лабораторные методы исследования физических свойств и режимов почв: методическое руководство. М.: Изд-во Моск. Ун-та, 2001. 200 с.
  9. Федотов Г. Н., Шеин Е. В., Ушкова Д. А., Салимгареева О. А., Горепекин И. В., Потапов Д. И. Надмолекулярные образования из молекул гуминовых веществ и их фрактальная организация // Почвоведение. 2023. № 8. С. 903–910.
  10. Тюлин А. Ф. Органно-минеральные коллоиды в почве, их генезис и значение для корневого питания высших растений. М.: Изд-во АН СССР, 1958. 52 с.
  11. Angelico R., Colombo C., Di Iorio E., Brtnický M., Fojt J., Conte P. Humic substances: from supramolecular aggregation to fractal conformation – Is there time for a new paradigm? // Appl. Sci. 2023. V. 13. № 4. P. 2236.
  12. Оsterberg R., Mortensen K. Fractal dimension of humic acids. A small angle neutron scattering study // Eur. Biophys. J. 1992. V. 21. № 3. P. 163–167.
  13. Senesi N., Rizzi F. R., Dellino P., Acquafredda P. Fractal humic acids in aqueous suspensions at various concentrations, ionic strengths, and pH values. Colloids and Surfaces A // Physicochemical and Engineering Aspects. 1997. V. 127. Iss. 1–3. P. 57–68.
  14. Senesi N., Rizzi F. R., Dellino P., Acquafredda P. Fractal dimension of humic acids in aqueous suspension as a function of pH and time // Soil Science Society of Am. J. 1996. V. 60. № 6. P. 1613–1678.
  15. Милановский Е. Ю. Гумусовые вещества почв как природные гидрофобно-гидрофильные соединения. М.: ГЕОС, 2009. 186 с.
  16. Старцев В. В., Дымов А. А. Амфифильные свойства и водорастворимые компоненты органического вещества почв приполярного Урала // Почвоведение. 2021. № 12. С. 1492–1505.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Dependence of the time interval between drops falling from a Schott funnel on the ordinal number of the drop

Baixar (47KB)
3. Fig. 2. Change in soil moisture content (SMC) from the time interval between drops falling from a Schott funnel when wet (2) and dry (1) air passes through a sod-podzolic soil sample

Baixar (64KB)
4. Fig. 3. The relationship between the experimental values ​​of capillary rupture humidity by the vacuum method and the calculated values. The points obtained by the intercept method are highlighted in red.

Baixar (62KB)
5. Fig. 4. Effect of moisture content of gray forest soil samples on the determined values ​​of capillary rupture moisture (CRM)

Baixar (73KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025