Assimilation of carbonates by mafic magma: fassaite gabbro of the olkhon terrane (western baikal region)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper characterizes specific gabbro, the main rock-forming mineral of which is fassaite – alumina-rich (up to 12% Al2O3) calcium pyroxene, typical for high-temperature metasomatic rocks. In terms of geochemical characteristics, the fassaite gabbro are close to the subalkaline monzogabbro of the Ust-Krestovsky complex, which are widely distributed within the Krestovsky subterrane of the Olkhon terrane (Western Baikal region). At the same time, they differ sharply from the latter in terms of higher content of CaO and MgO and lower content of SiO2 and Al2O3. Fassaite gabbro form several small massifs framed by the Ust-Krestovsky monzogabbro massif, without contacting the latter. A model of the formation of fassaite gabbros due to the assimilation of carbonate material (crustal carbonate melting) by subalkaline mafic magma is proposed.

About the authors

E. V. Sklyarov

Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: skl@crust.irk.ru

Corresponding member of the RAS

Russian Federation, Irkutsk

A. V. Lavrenchuk

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: alavr@igm.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

D. V. Semenova

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences

Email: skl@crust.irk.ru
Russian Federation, Novosibirsk

References

  1. Daly R.A. Origin of the alkaline rocks. // Geological Society of America Bulletin. 1910. 21. 87– 118.
  2. Gaeta M., Di Rocco T., Freda C. Carbonate assimilation in open magmatic systems: The role of melt-bearing skarns and cumulate-forming processes. // J. Petrol. 2009. 50. 361–385.
  3. Carter L.B., Dasgupta R. Hydrous basalt–limestone interaction at crustal conditions: Implications for generation of ultracalcic melts and outflux of CO2 at volcanic arcs // Earth and Planetary Science Letters. 2015. 427. 202–214
  4. Carter L.B., Dasgupta R. Effect of melt composition on crustal carbonate assimilation: Implications for the transition from calcite consumption to skarnification and associated CO2 degassing, // Geochem. Geophys. Geosyst. 2016. 17. 3893–3916.
  5. Barnes C., Prestvik T., Sundvoll, et al. Pervasive assimilation of carbonate and silicate rocks in the Hortavaer igneous complex, north-central Norway // Lithos. 2016. 80. 179‒199.
  6. Wenzel T., Baumgartner L.P., Brugmann G.E., et al. Partial melting and assimilation of dolomitic xenoliths by mafic magma: the Ioko-Dovyren intrusion (North Baikal Region, Russia) // Journal of Petrology. 2002. 43. 2049‒2074.
  7. Федоровский В.С., Скляров Е.В. Ольхонский геодинамический полигон (Байкал): аэрокосмические данные высокого разрешения и геологические карты нового поколения // Геодинамика и тектонофизика. 2010. Т. 1. № 4. С. 331‒418.
  8. Donskaya T.V., Gladkochub D.P., Fedorovsky V.S., et al. Pre-collisional (0.5 Ga) complexes of the Olkhon terrane (Southern Siberia) as an echo of events in the central Asian Orogenic Belt // Gondwana Res. 2017. V. 42. P. 243–263.
  9. Лавренчук А.В., Скляров Е.В., Изох А.Э., Котов А.Б., Сальникова Е.Б., Федоровский В.С., Мазукабзов А.М. Особенности состава габброидов Крестовской зоны (Ольхонский регион, Западное Прибайкалье) как отражение взаимодействия надсубдукционной литосферной мантии с мантийным плюмом // Геология и геофизика. 2017. Т. 58. № 10. С. 1439‒1458.
  10. Аэрокосмическая геологическая карта юго-западной части Ольхонского региона (Байкал). Зона Крестовский - Широкая. Ольхонский геодинамический полигон. Скляров Е.В. (отв. ред.), Федоровский В.С. (отв. ред.) Москва. 2012. Изд-во: Группа компаний А1 TIS.
  11. Spera F.J., Bergman S.C. Carbon dioxide in igneous petrogenesis: I. Aspects of the dissolution of CO2 in silicate liquids // Contributions to Mineralogy and Petrology. 1980. 74. 55– 66.
  12. Mollo S., Gaeta M., Freda C., et al. Carbonate assimilation in magmas: A reappraisal based on experimental petrology // Lithos. 2010. V. 114. P. 503–514.
  13. Wyllie P.J., Tuttle O.F. The system CaO-CO2-H2O and the origin of carbonatites // Journal of Petrology. 1960. V. 1. No. 1. P. 1–46.
  14. Fanelli M.T., Cava N., Wyllie P.J. Calcite and dolomite without portlandite at a new eutectic in CaO–MgO–CO2–H2O with applications to carbonatites / In: Morphology and Phase Equilibria of Minerals, Proceedings of the 13th General Meeting of the International Mineralogical Association, Bulgarian Academy of Science: Sofia. 1986. P. 313–322.
  15. Lentz D.R. Carbonatite genesis: A reexamination of the role of intrusion-related pneumatolytic skarn processes in limestone melting // Geology. 1999. V. 27. P. 335‒338.
  16. Скляров Е.В., Лавренчук А.В., Мазукабзов А.М. Дайки мраморов и кальцифиров Ольхонского композитного террейна (Западное Прибайкалье, Россия) // Геодинамика и тектонофизика. 2022.13(5).
  17. Ярмолюк В.В., Кузьмин М.И., Воронцов А.А. Конвергентные границы западно-тихоокеанского типа и их роль в формировании Центрально-Азиатского складчатого пояса // Геология и геофизика. 2013. Т. 54 (12). С. 1831‒1850.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences