Unusual ore mineralization of siliceous rocks of the south-kambalny central thermal field (kamchatka)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Samples of siliceous rocks of the South Kambalny Central Thermal Field (SKC), containing unique ore mineralization, were studied. Optical microscopy, scanning electron microscopy, X-ray microanalysis, X-ray phase analysis, ICP-MS and Raman spectroscopy were used for the study. High concentrations and a wide range of rare and rare earth elements have been found in siliceous rocks. Silicaminerals (quartz, moganite, cristobalite tridymite opal), oxides (hematite, anatase), hydroxides (goethite), carbonates (calcite with Fe and Mn impurities), sulfates (barite with Sr impurities, gypsum), sulfides (pyrite, marcasite, chalcopyrite, chalcocite), phosphates (xenotime-Y, YPO4 with impurities of lanthanides, S, Ca and As; aluminophosphate, AlPO4 with impurities of V) and apatite have been identified. Structures of anatase replacement by quartz often in association with pyrite have been identified. The mineralization of siliceous rocks of the SKC reflects the physicochemical specificity of deep metal-bearing solutions.

Full Text

Restricted Access

About the authors

G. A. Palyanova

V.S. Sobolev Institute of Geology and Mineralogy of the Russian Academy of Sciences

Author for correspondence.
Email: palyan@igm.nsc.ru
Russian Federation, Novosibirsk

S. N. Rychagov

Institute of Volcanology and Seismology of the Russian Academy of Sciences

Email: palyan@igm.nsc.ru
Russian Federation, Petropavlovsk-Kamchatsky

E. N. Svetova

Institute of Geology of the Federal Research Center “Karelian Scientific Center RAS”

Email: palyan@igm.nsc.ru
Russian Federation, Petrozavodsk

T. N. Moroz

V.S. Sobolev Institute of Geology and Mineralogy of the Russian Academy of Sciences

Email: palyan@igm.nsc.ru
Russian Federation, Novosibirsk

Yu. V. Seryotkin

V.S. Sobolev Institute of Geology and Mineralogy of the Russian Academy of Sciences

Email: palyan@igm.nsc.ru
Russian Federation, Novosibirsk

E. I. Sandimirova

Institute of Volcanology and Seismology of the Russian Academy of Sciences

Email: palyan@igm.nsc.ru

Academician of the RAS 

Russian Federation, Petropavlovsk-Kamchatsky

N. S. Bortnikov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences

Email: palyan@igm.nsc.ru
Russian Federation, Moscow

References

  1. Рычагов С.Н., Кравченко О.В., Нуждаев А.А., Чернов М.С., Карташева Е.В., Кузьмина А.А. Южно-Камбальное Центральное термальное поле: структурное положение, гидрогеохимические и литологические характеристики / Вулканизм и связанные с ним процессы, Мат. XXIII научной конф., посвященной Дню вулканолога. Петропавловск-Камчатский. 2020. С. 198–201. http://www.kscnet.ru/ivs/lgt/wp-content/uploads/2020/12/art51.pdf
  2. Нуждаев И.А., Рычагов С.Н., Феофилактов С.О., Денисов Д.К. Особенности магнитного поля геотермальных систем Паужетского района (Южная Камчатка) // Вулканология и сейсмология. 2023.№ 2. С. 33–51. https://doi.org/10.31857/S0203030622060049.
  3. Рычагов С.Н., Сандимирова Е.И., Чернов М.С., Кравченко О.В., Карташева Е.В. Состав, строение и происхождение карбонатных конкреций Южно-Камбального Центрального термальногополя (Камчатка) // Вулканология и сейсмология. 2021. № 4. С. 45–60. https://doi.org/10.31857/S0203030621040052
  4. Götze J., Nasdala L., Kleeberg R., Wenzel M. Occurrence and distribution of “moganite” in agate/chalcedony: A combined micro-Raman, Rietveld, and cathodoluminescence study // Contrib. Mineral. Petrol. 1998. № 133. P. 96–105.
  5. Светов С.А., Степанова А.В., Бурдюх С.В., Парамонов А.С., Утицына В.Л., Эхова М.В., Теслюк И.А., Чаженгина С.Ю., Светова Е.Н., Конышев А.А. Прецизионный ICP-MS анализ докембрийских горных пород: методика и оценка точности результатов // Труды КарНЦ РАН. 2023. № 2. С. 73–86. https://doi.org/10.17076/geo1755
  6. Kingma K.J., Hemley R.J. Raman spectroscopic study of microcrystalline quartz // American Mineralogist. 1994. № 79. P. 269–273.
  7. Gracia L., Beltrán A., Errandonea D. CharacterizationoftheTiSiO4 structureanditspressure-inducedphasetransformations: Density functional theory study // Physical Review. 2009. B 80. 094105. https://doi.org/10.1103/PhysRevB.80.094105
  8. Кириллова С.А., Альмяшев В.И., Гусаров В.В. Спинодальный распад в системе SiO2–TiO2 и формирование иерархически организованных наноструктур // Наносистемы: Физика, Химия, Математика. 2012. 3 (2). С.100–115.
  9. Ricker R. W., Hummel A. Reactions in the System TiO2–SiO2; Revision of the Phase Diagram // Journal of the American Ceramic Society. 1951. 34(9). P. 271–279. https://doi.org/10.1111/j.1151-2916.1951.tb09129.x
  10. Lee J.G., Pickard C.J., Cheng B. High-pressure phase behaviors of titanium dioxide revealed by a Δ-learning potential // J. Chem. Phys. 2022. 156. 074106. https://doi.org/10.1063/5.0079844
  11. Таусон В.Л., Рычагов С.Н., Акимов В.В., Липко С.В., Смагунов Н.В., Герасимов И.Н., Давлетбаев Р.Г., Логинов Б.А. Роль поверхностных явлений в концентрировании некогерентныхэлементов: золото в пиритах гидротермальных глин термальных полей Южной Камчатки // Геохимия. 2015. № 11. C. 1000–1014.
  12. Forster H.J. The chemical composition of REE–Y–Th–Urich accessory minerals from peraluminous granites of the Erzgebirge–Fichtelgebirge region, Germany. Part II: xenotime // American Mineralogist. 1998. № 83. P. 1302– 1315.
  13. Moxon T., Palyanova G. Agate Genesis: A Continuing Enigma // Minerals. 2020. № 10. 953.
  14. Heaney, P.J. Moganite as an indicator for vanished evaporites: a testament reborn? // J. Sediment. Res. A Sediment. Petrol. Process. 1995. P. 633–638. doi: 10.1306/d4268180-2b26-11d7-8648000102c1865d.
  15. Большаков И.Е., Фролова Ю.В., Житова Е.С., Рычагов С.Н., Чернов М.С. Агаты современных термальных полей Камчатки / В сборнике: Вулканизм и связанные с ним процессы. Материалы XXIV ежегодной научной конференции, посвященной Дню вулканолога. Петропавловск-Камчатский. 2021. С. 117–120.
  16. Bambauer H.U., Brunner G.O., Laves F. Beobachtungenüber Lamellenbauan Bergkristallen1 // Z. Kristallogr 1961. № 116. P. 173–181. (in German)
  17. Marinova I., Ganev V., Titorenkova R. Colloidal origin of colloform-banded textures in the Paleogene low-sulfidation Khan Krum gold deposit, SE Bulgaria // Miner. Depos. 2014. № 49. P. 49–74.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. South Kambalny Central Thermal Field (a): in the background on the right is Kosheleva Volcano, on the left is Kambalny, in the foreground on the right is a hot area (contour 1), on the left is a cold area with siliceous deposits (contour 2), where the samples were collected, and photos of typical samples of siliceous deposits of the South Kambalny Central Thermal Field (b–e): (b) quartz-chalcedony formations with inclusions of dark veins, lenses with sulfides; “films” (veins along cracks in isolation) of green material are present on the surface (No. 1/21); (c) sample with caverns and dark veins, lenses, spots characteristic of near-surface boiling zones (No. 4/21); (d) black-gray heterogeneous siliceous deposits with sulfides (No. 5/21); (d) sample with dark grey bands with sulphides in the marginal parts (7/21); (e) sample with unpolished surface: grey heterogeneous siliceous deposits covered with a green “film”, “film” thickness 3–5 mm (No. 9/21). Sample size from 2.5–5 to 5–7 cm.

Download (293KB)
3. Fig. 2. BSE photo of mineral inclusions in the quartz-chalcedony matrix of sample No. 1/21 (Fig. 1 b) – pyrite (Py), chalcopyrite (Ccp), barite (Brt) and xenotime (Xtm-Y) (a–g) and energy-dispersive X-ray spectrum reflecting the composition of xenotime (d).

Download (282KB)
4. Fig. 3. Raman spectra of phases in sample No. 5/21 (Fig. 1g): (a) 1 – fragment of the spectrum of anatase (Ant) with quartz (Qz) with 7-fold magnification, inset – Raman spectrum of anatase in the range of 100–800 cm–1; 2 – marcasite (Mrc) with a slight admixture of pyrite (Py), 3 – pyrite; (b) 1 – pyrite with an admixture of apatite (Ap); 2 – pyrite with quartz and moganite (Mog).

Download (158KB)
5. Fig. 4. Optical (a) and SEM photographs (c–d) of fragments of one of the samples (5/21, Fig. 1 g) containing quartz-anatase-pyrite subgraphic intergrowths and a spectrum reflecting the composition at points located in the region of similar structures (b).

Download (316KB)
6. Fig. 5. SEM photo of an anatase grain replaced by quartz surrounded by pyrite crystals (a) and distribution maps of Ti (b), Si (c), O (d), S (d) and Fe (e) in anatase-quartz-pyrite aggregates. Fragment of sample 5/21, Fig. 1 (d).

Download (544KB)
7. Fig. 6. Micrographs of thin sections of siliceous deposits (sample 4/21, Fig. 1 c) in transmitted light, illustrating the diversity of silica microtextures: a - alternation of rhythms formed by fine-grained quartz (µQz), chalcedony spherulites (sCha(–)), fibrous chalcedony (Cha(–)), quartzine (Qzn(+)); b - quartz microgeode with an internal cavity, surrounded by concentric-zonal microtextures formed by fibrous chalcedony, micro- and macrocrystalline quartz (Qz), finely dispersed goethite and hematite (Fe-ox); c - development of feathery textures (fQz) along the boundaries of prismatic quartz crystals with growth lines (Gl), pigmented with goethite and hematite. Photo (a) – in crossed nicols and with a plaster plate inserted; (b, c) – in crossed nicols.

Download (480KB)
8. Fig. 7. Microphotographs of thin sections in polarized light and Raman spectra of local areas of siliceous deposits made up of spherulitic (1) and fibrous (2) chalcedony, fine-grained (3) and crystalline (4) quartz. The areas of analysis are marked in the photo with yellow dots. The spectra contain characteristic bands of α-quartz (Qz) and moganite (Mog). СMog is the moganite content.

Download (536KB)

Copyright (c) 2024 Russian Academy of Sciences