On the minimum oxygen impurity content in tungsten powders
- Authors: Alymov M.I.1, Rogachev S.A.1, Ankudinov A.B.1, Samokhin A.V.2
-
Affiliations:
- Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences
- Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
- Issue: Vol 520, No 1 (2025)
- Pages: 66-72
- Section: ТЕХНИЧЕСКИЕ НАУКИ
- URL: https://jdigitaldiagnostics.com/2686-7400/article/view/683277
- DOI: https://doi.org/10.31857/S2686740025010091
- EDN: https://elibrary.ru/GTEQNP
- ID: 683277
Cite item
Abstract
A theoretical assessment of the minimum oxygen content in tungsten powder was carried out and compared with experimental results for passivated powder. The assumption of particles being spherical in size and distributed according to a lognormal law was used. Using this method, the thickness of the oxide layer in tungsten powders recovered at temperatures of 650, 800 and 950 °С (and with average size 1.53, 2.26 and 4.54 μm) was estimated and it turns out to be much larger than the monomolecular layer: 50, 10, 5 nm, respectively.
Full Text

About the authors
M. I. Alymov
Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences
Author for correspondence.
Email: alymov.mi@gmail.com
Corresponding Member of the RAS
Russian Federation, Chernogolovka, Moscow RegionS. A. Rogachev
Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences
Email: rogachevsa@gmail.com
Russian Federation, Chernogolovka, Moscow Region
A. B. Ankudinov
Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences
Email: alymov.mi@gmail.com
Russian Federation, Chernogolovka, Moscow Region
A. V. Samokhin
Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Email: alymov.mi@gmail.com
Russian Federation, Moscow
References
- Wriedt H.A. The O-W (oxygen-tungsten) system // Bull. Alloy Phase Diagrams. 1989. № 10. Р. 368–384. https://doi.org/10.1007/BF02877593
- Кубашевски О. Диаграммы состояния двойных систем на основе железа: Справочник / Пер. с англ. Л. М. Бернштейна; под ред. Л. А. Петровой. М.: Металлургия, 1985. 183 с.
- Skotnicova K., Kirillova V., Ermishkin V. et al. Influence of alloying and testing conditions on mechanical properties and deformation behavior of <100> tungsten-based single crystals // Materials Science and Engineering. 2015. V. 636. P. 536–542. https://doi.org/10.1016/j.msea.2015.03.126
- Galiev F. F., Saikov I. V., Berbentsev V. D. et al. Mechanical Properties of Composite Rods Produced by Hot Gas Extrusion of the Nickel and Aluminum Powder Mixtures in a Steel Shell // Inorganic Materials: Applied Research. 2024. V. 15. P. 772–778.https://doi.org/10.1134/S2075113324700205
- Алымов М.И., Рубцов Н.М., Сеплярский Б.С. и др. Получение и исследование наночастиц железа, защищенных оксидной пленкой // Неорганические материалы. 2017. Т. 53. № 9. С. 929–933. https://doi.org/10.7868/S0002337X17090044
- Martin J.E., Herzing A.A., Yan W. et al. Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles // Langmuir. 2008. V. 24. P. 4329–4334. https://doi.org/10.1021/la703689k
- Jeong S., Woo K., Kim D. et al. Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing // Advanced Functional Materials. 2008. V. 18. P. 679–686. https://doi.org/10.1002/adfm.200700902
- Raza A., Schwerz C., Pauzon C. et al. Effect of layer thickness on spatters oxidation of Hastelloy X alloy during powder bed fusion-laser beam processing // Powder Technology. 2023. V. 422. 118461. https://doi.org/10.1016/j.powtec.2023.118461
- Pradyot Patnaik. Handbook of Inorganic Chemicals. McGraw-Hill handbooks, 2003. ISBN0-07-049439-8.
Supplementary files
