Electron beam polymerization of phosphorus: MALDI-TOF analysis of product structure

封面

如何引用文章

全文:

详细

The article discusses the results of a study of the effect of the reaction medium composition (distilled water or aqueous solutions of acetonitrile and sodium hypophosphite) on the process of elemental phosphorus polymerization under the influence of accelerated electrons. Carrying out polymerization in an aqueous medium eliminates direct contact with air, which makes the process safer, and adding various chemicals to the solution allows to control the process parameters. It is shown that in an aqueous solution of acetonitrile and sodium hypophosphite, the conversion of phosphorus increases by 7%, and an increase in the polymerization rate is observed compared to using water as a reaction medium at the initial stage. The composition and structure of phosphorus-containing polymers obtained during electron beam polymerization were characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF).

作者简介

N. Tarasova

Dmitry Mendeleev University of Chemical Technology of Russia

125047 Moscow, Russian Federation

A. Zanin

Dmitry Mendeleev University of Chemical Technology of Russia

Email: zanin.a.a@muctr.ru
125047 Moscow, Russian Federation

E. Krivoborodov

Dmitry Mendeleev University of Chemical Technology of Russia

125047 Moscow, Russian Federation

S. Karavaev

Dmitry Mendeleev University of Chemical Technology of Russia

125047 Moscow, Russian Federation

N. Ksenofontov

Dmitry Mendeleev University of Chemical Technology of Russia

125047 Moscow, Russian Federation

T. Mirzaaliev

Dmitry Mendeleev University of Chemical Technology of Russia

125047 Moscow, Russian Federation

参考

  1. Tian H., Wang J., Lai G., Dou Y., Gao J., Duan Z., Feng X., Wu Q., He X., Yao L., Zeng L., Liu Y., Yang X., Zhao J., Zhuang S., Shi J., Qu G., Yu X.-F., Chu P.K., Jiang G. // Chem. Soc. Rev. 2023. V. 52. № 16. P. 5388–5484. https://doi.org/10.1039/D2CS01018F
  2. Han Z., Yang X., Yao H., Ran C., Guan C., Lu K., Yang C., Fu L. // Energy Technol. 2025. V. 13. № 1. 2401320. http://dx.doi.org/10.1002/ente.202401320
  3. Zhou J., Ye W., Lian X., Shi Q., Liu Y., Yang X., Liu L., Wang D., Choi J.-H., Sun J., Yang R., Wang M.-S., Rummeli M.H. // Energy Storage Mater. 2022. V. 46. P. 20–28. https://doi.org/10.1016/j.ensm.2021.12.042
  4. Sun Y., Wang L., Li Y., Li Y., Lee H.R., Pei A., He X., Cui Y. // Joule. 2019. V. 3. № 4. P. 1080–1093. https://doi.org/10.1016/j.joule.2019.01.017
  5. Bai J., Li Z., Wang X., Świerczek K., Wu C., Zhao H. // Energy Mater. Adv. 2024. V. 5. 0086. https://doi.org/10.34133/energymatadv.0086
  6. Strumolo M.J., Eremin D.B., Wang S., Mora Perez C., Prezhdo O.V., Figueroa J.S., Brutchey R.L. // Inorg. Chem. 2023. V. 62. № 16. P. 6197–6201. https://doi.org/10.1021/acs.inorgchem.3c00370
  7. Smith J.B., Hagaman D., Ji H.-F. // Nanotechnology. 2016. V. 27. № 21. 215602. https://doi.org/10.1088/0957-4484/27/21/215602
  8. Yilmaz O., Kalyon H.Y., Gencten M., Sahin Y. // J. Energy Storage. 2024. V. 79. 110133. https://doi.org/10.1016/j.est.2023.110133
  9. Yuan H., Zhao Y., Wang Y., Duan J., He B., Tang Q. // J. Power Sources. 2019. V. 410–411. P. 53–58. https://doi.org/10.1016/j.jpowsour.2018.11.011
  10. Fung C.-M., Er C.-C., Tan L-.L., Mohamed A.R., Chai S.-P. // Chem. Rev. 2022. V. 122. № 3. P. 3879–3965. https://doi.org/10.1021/acs.chemrev.1c00068
  11. He D., Dong J., Zhang Y.-N., Zhang S., Zhang Y.-N., Qu J. // Catalysts. 2025. V. 15. № 3. 218. https://doi.org/10.3390/catal15030218
  12. Gibertini E., Carosio F., Aykanat K., Accogli A., Panzeri G., Magagnin L. // Surf. Interfaces. 2021. V. 25. 101252. https://doi.org/10.1016/j.surfin.2021.101252
  13. Tarasova N., Zanin A., Sobolev P., Ivanov A. // Phosphorus Sulfur Silicon Relat. Elem. 2021. V. 197. № 5–6. P. 608–609. https://doi.org/10.1080/10426507.2021.2011885
  14. Tarasova N.P., Balitskii V.Yu. // J. Appl. Chem. USSR. 1991. V. 64. № 6. P. 1035–1040.
  15. Tarasova N.P., Smetannikov Yu.V., Vilesov A.S., Shevchenko V.P., Byakov V.M. // Dokl. Phys. Chem. 2008. V. 423. P. 335–338. https://doi.org/10.1134/S0012501608120051
  16. Yang Z., Li W., Huang H., Ren S., Men Y., Li F., Yu X., Luo Q. // Talanta. 2022. V. 237. 122978. https://doi.org/10.1016/j.talanta.2021.122978
  17. O’Rourke M.B., Smith C.C., De La Monte S.M., Suther- land G.T., Padula M.P. // Curr. Protoc. Mol. Biol. 2019. V. 126. № 1. e86. https://doi.org/10.1002/cpmb.86
  18. Zhang W., Andersson J.T., Räder H.J., Müllen K. // Carbon. 2015. V. 95. P. 672–680. https://doi.org/10.1016/j.carbon.2015.08.057
  19. Тарасова Н.П., Занин А.А., Караваев С.Е., Ксенофонтов Н.А., Иванов А.Б. // Успехи в химии и химической технологии. 2024. Т. 38. № 1. С. 38–41.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025