Synthesis of symmetrical 1,3-bis(polyfluorophenyl)ureas based on polyfluorobenzoic acid chlorides with potential antimicrobial action

封面

如何引用文章

全文:

详细

A one-pot method for the synthesis of symmetrical 1,3-bis(polyfluorophenyl)ureas based on an interaction of polyfluorobenzoic acid chlorides with sodium azide and subsequent Curtius rearrangement has been developed. It was found that 1,3-bis(3,4,5-trifluoro-2-methoxyphenyl)urea has a fungistatic effect on pathogenic dermatophyte strains and high antigonorrheal activity.

作者简介

A. Baranovskiy

I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

620066 Ekaterinburg, Russian Federation

E. Shchegolkov

I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

620066 Ekaterinburg, Russian Federation

Ya. Burgart

I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

620066 Ekaterinburg, Russian Federation

N. Gerasimova

Ural Research Institute for Dermatology, Venereology and Immunopathology

620076 Ekaterinburg, Russian Federation

N. Evstigneeva

Ural Research Institute for Dermatology, Venereology and Immunopathology

620076 Ekaterinburg, Russian Federation

V. Saloutin

I.Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

Email: saloutin@ios.uran.ru
620066 Ekaterinburg, Russian Federation

参考

  1. Amii H., Uneyama K. // Chem. Rev. 2009. V. 109. № 5. P. 2119–2183. https://doi.org/10.1021/cr800388c
  2. Shteingarts V.D. // J. Fluorine Chem. 2007. V. 128. № 7. P. 797–805. https://doi.org/10.1016/j.jfluchem.2007.02.019
  3. Ahrens T., Kohlmann J., Ahrens M., Braun T. // Chem. Rev. 2015. V. 115. № 2. P. 931–972. https://doi.org/10.1021/cr500257c
  4. Политанская Л.В., Селиванова Г.А., Пантелеева Е.В., Третьяков Е.В., Платонов В.Е., Никульшин П.В., Виноградов А.С., Зонов Я.В., Карпов В.М., Меженкова Т.В., Васильев А.В., Колдобский А.Б., Шилова О.С., Морозова С.М., Бургарт Я.В., Щегольков Е.В., Салоутин В.И., Соколов В.Б., Аксиненко А.Ю., Ненайденко В.Г., Москалик М.Ю., Астахова В.В., Шаинян Б.А., Таболин А.А., Иоффе С.Л., Музалевский В.М., Баленкова Е.С., Шастин А.В., Тютюнов А.А., Бойко В.Э., Игумнов С.М., Дильман А.Д., Адонин Н.Ю., Бардин В.В., Масоуд С.М., Воробьева Д.В., Осипов С.Н., Носова Э.В., Липунова Г.Н., Чарушин В.Н., Прима Д.О., Макаров А.Г., Зибарев А.В., Трофимов Б.А., Собенина Л.Н., Беляева К.В., Сосновских В.Я., Обыденнов Д.Л., Усачев С.А. // Успехи химии. 2019. Т. 88. № 5 С. 425–569. https://doi.org/10.1070/rcr4871
  5. Zhou Y., Wang J., Gu Z., Wang S., Zhu W., Aceña J.L., Soloshonok V.A., Izawa K., Liu H. // Chem. Rev. 2016. V. 116. № 2. P. 422–518. https://doi.org/10.1021/acs.chemrev.5b00392
  6. Han J., Remete A.M., Dobson L.S., Kiss L., Izawa K., Moriwaki H., Soloshonok V.A., O’Hagan D. // J. Fluorine Chem. 2020. V. 239. 109639. https://doi.org/10.1016/j.jfluchem.2020.109639
  7. Han J., Kiss L., Mei H., Remete A.M., Ponikvar-Svet M., Sedgwick D.M., Roman R., Fustero S., Moriwaki H., Soloshonok V.A. // Chem. Rev. 2021. V. 121. № 8. P. 4678–4742. https://doi.org/10.1021/acs.chemrev.0c01263
  8. Wu Y., Wang Y., He M., Tao X., Li J., Shan D., Lv L. // Mini-Rev. Org. Chem. 2017. V. 14. № 5. P. 350–356. https://doi.org/10.2174/1570193x14666170511122820
  9. Inoue M., Sumii Y., Shibata N. // ACS Omega. 2020. V. 5. № 19. P. 10633–10640. https://doi.org/10.1021/acsomega.0c00830
  10. Nair A.S., Singh A.K., Kumar A., Kumar S., Sukumaran S., Koyiparambath V.P., Pappachen L.K., Rangarajan T.M., Kim H., Mathew B. // Processes. 2022. V. 10. № 10. 2054. https://doi.org/10.3390/pr10102054
  11. Meanwell N.A. // J. Med. Chem. 2018. V. 61. № 14. P. 5822–5880. https://doi.org/10.1021/acs.jmedchem.7b01788
  12. Isanbor C., O’Hagan D. // J. Fluorine Chem. 2006. V. 127. № 3. P. 303–319. https://doi.org/10.1016/j.jfluchem.2006.01.011
  13. Bégué J.-P., Bonnet-Delpon D. // J. Fluorine Chem. 2006. V. 127. № 8. P. 992–1012. https://doi.org/10.1016/j.jfluchem.2006.05.006
  14. Kirk K.L. // J. Fluorine Chem. 2006. V. 127. № 8. P. 1013–1029. https://doi.org/10.1016/j.jfluchem.2006.06.007
  15. Hagmann W.K. // J. Med. Chem. 2008. V. 51. № 15. P. 4359–4369. https://doi.org/10.1021/jm800219f
  16. O’Hagan D. // J. Fluorine Chem. 2010. V. 131. № 11. P. 1071–1081. https://doi.org/10.1016/j.jfluchem.2010.03.003
  17. Wang J., Sánchez-Roselló M., Aceña J.L., del Pozo C., Sorochinsky A.E., Fustero S., Soloshonok V.A., Liu H. // Chem. Rev. 2014. V. 114. № 4. P. 2432–506. https://doi.org/10.1021/cr4002879
  18. Щегольков Е.В., Бургарт Я.В., Щур И.В., Салоутин В.И. // Успехи химии. 2024. Т. 93. № 8. RCR5131. https://doi.org/10.59761/rcr5131
  19. Ronchetti R., Moroni G., Carotti A., Gioiello A., Camaioni E. // RSC Med. Chem. 2021. V. 12. № 7. P. 1046–1064. https://doi.org/10.1039/d1md00058f
  20. Junquera P., Hosking B., Gameiro M., Macdonald A. // Parasite. 2019. V. 26. P. 26. https://doi.org/10.1051/parasite/2019026
  21. Liu D., Tian Z., Yan Z., Wu L., Ma Y., Wang Q., Liu W., Zhou H., Yang C. // Bioorg. Med. Chem. 2013. V. 21. № 11. P. 2960–2967. https://doi.org/10.1016/j.bmc.2013.03.075
  22. Zhang B., Zhao Y.F., Zhai X., Fan W.J., Ren J.L., Wu C.F., Gong P. // Chin. Chem. Lett. 2012. V. 23. № 8. P. 915–918. https://doi.org/10.1016/j.cclet.2012.06.009
  23. Yao P., Zhai X., Liu D., Qi B.H., Tan H.L., Jin Y.C., Gong P. // Arch. Pharm. 2010. V. 343. № 1. P. 17–23. https://doi.org/10.1002/ardp.200900130
  24. Artamkina G.A., Sergeev A.G., Beletskaya I.P. // Tetrahedron Lett. 2001. V. 42. № 26. P. 4381–4384. https://doi.org/10.1016/s0040-4039(01)00716-x
  25. Xuan W., Ding W., Hui H.-x., Zhang S.-q. // Med. Chem. Res. 2013. V. 22. № 8. P. 3857–3862. https://doi.org/10.1007/s00044-012-0398-y
  26. Akhlaghinia B., Rouhi-Saadabad H. // Can. J. Chem. 2013. V. 91. № 3. P. 181–185. https://doi.org/10.1139/cjc-2011-0493
  27. Kim J.-G., Jang D. // Synlett. 2008. V. 2008. № 13. P. 2072–2074. https://doi.org/10.1055/s-2008-1077979
  28. Daina A., Michielin O., Zoete V. // Sci. Rep. 2017. V. 7. P. 42717. https://doi.org/10.1038/srep42717
  29. Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. // Adv. Drug Delivery Rev. 1997. V. 23. № 1–3. P. 3–25. https://doi.org/10.1016/s0169-409x(96)00423-1
  30. Martin Y.C. // J. Med. Chem. 2005. V. 48. № 9. P. 3164–3170. https://doi.org/10.1021/jm0492002
  31. Российские рекомендации. Определение чувствительности микроорганизмов к антимикробным препаратам. Версия 2024-02. Год утверждения (частота пересмотра): 2024. – МАКМАХ, СГМУ: Смоленск, 2024. 192 с.
  32. Shchur I.V., Shchegolkov E.V., Burgart Y.V., Kozitsina A.N., Ivanova A.V., Alyamovskaya I.S., Evstigneeva N.P., Gerasimova N.A., Ganebnykh I.N., Zilberberg N.V., Kungurov N.V., Saloutin V.I., Chupakhin O.N. // Polyhedron. 2020. V. 177. 114279. https://doi.org/10.1016/j.poly.2019.114279
  33. Shchegolkov E.V., Shchur I.V., Burgart Y.V., Slepukhin P.A., Evstigneeva N.P., Gerasimova N.A., Zilberberg N.V., Kungurov N.V., Saloutin V.I., Chupakhin O.N. // Polyhedron. 2021. V. 194. 114900. https://doi.org/10.1016/j.poly.2020.114900
  34. Burgart Y.V., Elkina N.A., Shchegolkov E.V., Krasnykh O.P., Makhaeva G.F., Triandafilova G.A., Solodnikov S.Yu., Boltneva N.P., Rudakova E.V., Kovaleva N.V., Serebryakova O.G., Ulitko M.V., Borisevich S.S., Gerasimova N.A., Evstigneeva N.P., Kozlov S.A., Korolkova Y.V., Minin A.S., Belousova A.V., Mozhaitsev E.S., Klabukov A.M., Saloutin V.I. // Molecules. 2022. V. 28. № 1. 59. https://doi.org/10.3390/molecules28010059
  35. Zhao S., Duncan M., Tomberg J., Davies C., Unemo M., Nicholas R.A. // Antimicrob. Agents Chemother. 2009. V. 53. № 9. P. 3744–3751. https://doi.org/10.1128/AAC.00304-09
  36. Macheboeuf P., Contreras-Martel C., Job V., Dideberg O., Dessen A. // FEMS Microbiol. Rev. 2006. V. 30. № 5. P. 673–691. https://doi.org/10.1111/j.1574-6976.2006.00024.x
  37. Fenton B.A., Tomberg J., Sciandra C.A., Nicholas R.A., Davies C., Zhou P. // J. Biol. Chem. 2021. V. 297. № 4. P. 101188. https://doi.org/10.1016/j.jbc.2021.101188
  38. Bugnon M., Röhrig U.F., Goullieux M., Perez M.A.S., Daina A., Michielin O., Zoete V. // Nucleic Acids Res. 2024. V. 52. № W1. P. W324–W332. https://doi.org/10.1093/nar/gkae300
  39. Eberhardt J., Santos-Martins D., Tillack A.F., Forli S. // J. Chem. Inf. Model. 2021. V. 61. № 8. P. 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203
  40. Bell E.W., Zhang Y. // J. Cheminform. 2019. V. 11. № 1. P. 40. https://doi.org/10.1186/s13321-019-0362-7
  41. Stanzione F., Giangreco I., Cole J.C. // Prog. Med. Chem. 2021. V. 60. P. 273–343. https://doi.org/10.1016/bs.pmch.2021.01.004
  42. Shchegol'kov E.V., Shchur I.V., Burgart Y.V., Saloutin V.I., Trefilova A.N., Ljushina G.A., Solodnikov S.Y., Markova L.N., Maslova V.V., Krasnykh O.P., Borisevich S.S., Khursan S.L. // Bioorg. Med. Chem. 2017. V. 25. № 1. P. 91–99. https://doi.org/10.1016/j.bmc.2016.10.014

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025