WEAKLY SSATURATED SUBGRAPHS OF RANDOM GRAPHS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, we study weak saturation numbers of binomial random graphs. We proved stability of the weak saturation for several pattern graphs, and proved asymptotic stability for all pattern graphs.

About the authors

O. Kalinichenko

Moscow Institute of Physics and Technology, Laboratory of Combinatorial and Geometric Structures

Author for correspondence.
Email: s15b1_kalinichenko@179.ru
Russia, Moscow

B. Tayfeh-Rezaie

School of Mathematics, Institute for Research in Fundamental Sciences (IPM)

Author for correspondence.
Email: tayfeh-r@ipm.ir
Iran, Tehran

M. Zhukovskii

Moscow Institute of Physics and Technology, Laboratory of Combinatorial and Geometric Structures

Author for correspondence.
Email: zhukmax@gmail.com
Russia, Moscow

References

  1. Alon N. An extremal problem for sets with applications to graph theory // J. Combin. Theory Ser. A. 1985. V. 40. № 1. P. 82–89.
  2. Bidgoli M.R., Mohammadian A., Tayfeh-Rezaie B., Zhukovskii M. Threshold for weak saturation stability // arXiv:2006.06855. 2020.
  3. Bollobás B. Weakly k-saturated graphs // Beiträge zur Graphen–theorie. 1968. P. 25–31.
  4. Kalai G. Hyperconnectivity of graphs // Graphs Combin. 1985 V. 1. P. 65–79.
  5. Kalinichenko O., Zhukovskii M. Weak saturation stability // arXiv:2107.11138. 2022.
  6. Korándi D., Sudakov B. Saturation in random graphs // Random Structures Algorithms. 2017. V. 51. № 1. P. 169–181.
  7. Krivelevich M., Patkós B. Equitable coloring of random graphs // Random Structures Algorithms. 2009. V. 35. № 1. P. 83–99.
  8. Kronenberg, G., Martins T., Morrison N. Weak saturation numbers of complete bipartite graphs in the clique // J. Combin. Theory Ser. A. 2021. V. 178. 105357.
  9. Lovász, L. Flats in matroids and geometric graphs // Combinatorial Surveys. 1977. P. 45–86.
  10. Spencer J. Threshold Functions for Extension Statements // J. Combin. Theory Ser. A. 1990. V. 53. P. 286–305.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 О.И. Калиниченко, Б. Тайфе-Реза, М.Е. Жуковский