THERMAL EXPLOSION AS A RESONANCE OF THE COMBUSTION PROCESS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on the thermodynamic analysis of the combustion process, a new model of the laminar combustion process is constructed. When controlling the temperature at the inlet (an increase in the temperature at the inlet to the combustion chamber), depending on the structure of the standard chemical potential, high-frequency oscillations of the thermal explosion resonance occur. Resonance regimes are modeled during heat pumping, the nature of their nucleation is established depending on the structure of the standard chemical potential, and numerical experiments on the occurrence of these modes are presented.

About the authors

E. V. Radkevich

Moscow State University M.V. Lomonosov

Author for correspondence.
Email: evrad07@gmail.com
Russian, Moscow

O. A. Vasilieva

Moscow State University of Civil Engineering

Author for correspondence.
Email: vasiljeva.ovas@yandex.ru
Russian, Moscow

M. I. Sidorov

Russian University of Chemical Technology named after D.I. Mendeleev

Author for correspondence.
Email: mihail.sidorov0213@gmail.com
Russian, Moscow

M. E. Stavrovskii

Engineering Center for Mobile Solutions, Federal State Budgetary Educational Institution of Higher Education “MIREA – Russian Technological University”

Author for correspondence.
Email: stavrov@list.ru
Russian, Moscow

References

  1. Зельдович Я.Б., Баренблатт Г.И., Либрович В.Б., Махвиладзе Г.М. Математическая теория горения и взрыва. М.: Наука, 1980. 472 с.
  2. Раушенбах Б.В. Вибрационное горение. М.: Гос. изд. физ.-мат. лит., 1961. 500 с.
  3. Smirnov N.N., Nikitin V.F., Stamov L.I. Different scenarios of shock wave focusing inside a wedge-shaped cavity in hydrogen-air mixtures //Aerospace Science and Technology, издaтeльcтвo Elsevier BV (Netherlands). 2022. T. 121. C. 107382.
  4. Smirnov N.N., Betelin V.B., Nikitin V.F., Phylippov Yu G., Jaye Koo. Detonation engine fed by acetylene–oxygen mixture // Acta Astronautica, издaтeльcтвo Pergamon Press Ltd. (United Kingdom). 2014. T. 104. C. 134–146.
  5. Smirnov N.N., Nikitin V.F., Phylippov Yu.G. Deflagration to detonation transition in gases in tubes with cavities // Journal of Engineering Physics and Thermophysics. Springer Nature (Switzerland). 2010. T. 83. № 6. C. 1287–1316.
  6. Смирнов Н.Н., Никитин В.Ф., Алиари Шурехдели Ш. Переходные режимы распространения волн в метастабильных системах // Физика горения и взрыва. Издательство Сиб. отд-ния Рос. акад. наук (Новосибирск). 2008. Т. 44. № 5. С. 25–37.
  7. Radkevich E.V., Vasil’eva O.A., Sidorov M.I., Stavrov-skii M.E. On the Raushenbakh Resonance // Moscow University Mechanics Bulletin. 2021. V. 76. № 3. P. 65–77.
  8. Радкевич Е.В, Лукашев Е.А., Яковлев Н.Н., Васильева О.А., Сидоров М.И. Введение в обобщенную теорию неравновесных фазовых переходов и термодинамический анализ задач механики сплошной среды. М.: Издательство Московского университета, 2019. 342 с.
  9. Radkevich E.V., Vasil’eva O.A., Yakovlev N.N. Mechanism of Detonation Formation in the Process of Vibration Combustion // Aurasian Journal of Mathematical and Computer Applization. ISSN 2306-6172. 2022. № 20. P. 1–11.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (183KB)
3.

Download (216KB)

Copyright (c) 2023 Е.В. Радкевич, О.А. Васильева, М.И. Сидоров, М.Е. Ставровский