Operator estimates for problems in domains with singular curving of boundary

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

We consider a system of second order semi-linear elliptic equations in a multidimensional domain, the boundary of which is arbitrarily curved and is contained in a narrow layer along the unperturbed boundary. On the curve boundary we impose the Dirichlet or Neumann condition. In the case of the Neumann condition, on the structure of curving we additionally impose rather natural and weak conditions. Under such conditions we show that the homogenized problem is for the same system of equations in the unperturbed problem with the boundary condition of the same kind. The main result are W21- and L-operator estimates.

Full Text

Restricted Access

About the authors

D. I. Borisov

Institute of Mathematics, Ufa Federal Research Center, RAS

Author for correspondence.
Email: borisovdi@yandex.ru
Russian Federation, Ufa

R. R. Suleimanov

Ufa University of Science and Technologies

Email: radimsul@mail.ru
Russian Federation, Ufa

References

  1. Sanchez-Palencia E.. Non-homogeneous media and vibration theory. New York: Springer, 1980. 409 pp.
  2. Олейник О.А., Иосифьян Г.А., Шамаев А.С. Математические задачи теории сильно неоднородных упругих сред. М.: Изд-во МГУ, 1990. 312 с.
  3. Беляев А.Г., Михеев А.Г., Шамаев А.С. // Ж. вычисл. матем. матем. физ. 1992. Т. 32. № 8. С. 1258–1272.
  4. Чечкин Г.А., Акимова Е.А., Назаров С.А. // Доклады РАН. 2001. Т. 380. № 4. С. 439–442.
  5. Грушин В.В., Доброхотов С.Ю. // Матем. заметки. 2014. Т. 95. № 3. С. 359–375.
  6. Козлов В.А., Назаров С.А. // Алг. ан. 2010. Т. 22. № 6. С. 127–184.
  7. Пастухова С.Е. // Дифф. уравн. 2001. Т. 37. № 9. С. 1216–1222.
  8. Amirat Y., Bodart O., Chechkin G.A., Piatnitski A.L. // Stoch. Process. Appl. 2011. Т. 121. № 1. С. 1–23.
  9. Arrieta J., Brushi S. // Discr. Cont. Dyn. Syst. Ser. B. 2010. Vol. 14. No. 2. P. 327–351.
  10. Chechkin G.A., Friedman A., Piatnitski A.L. // J. Math. Anal. Appl. 1999. Vol. 231. No. 1. P. 213–234.
  11. Jäger W., Mikelić A. // Comm. Math. Phys. 2003. Vol. 232. No. 3. P. 429–455.
  12. Myong-Hwan Ri // Preprint: arXiv: 1311.0977. 2013.
  13. Neuss N., Neuss-Radu M., Mikelić A. // Applic. Anal. 2006. Vol. 85. No. 5. P. 479–502.
  14. Borisov D., Cardone G., Faella L., Perugia C. // J. Diff. Equat. 2013. Vol. 255. No. 12. P. 4378–4402.
  15. Борисов Д.И. // Пробл. матем. ан. 2022. Вып. 116. С. 69–84.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Regular perturbation of the boundary.

Download (2KB)
3. Fig. 2. Rapidly oscillating boundary.

Download (11KB)
4. Fig. 3. Fine perforation along the boundary.

Download (3KB)
5. Fig. 4. Perturbation by thin branches.

Download (3KB)
6. Fig. 5. Perturbation of a general-looking boundary.

Download (4KB)
7. Fig. 6. Example of coverage from condition (C).

Download (14KB)
8. Fig. 7. Examples of regions for which condition (C) is violated.

Download (2KB)

Copyright (c) 2024 Russian Academy of Sciences