Stability of solutions to the logistic equation with delay, diffusion and nonclassical boundary conditions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The work is devoted to the logistic equation with delay and diffusion with non-classical boundary conditions. The stability of a nontrivial equilibrium state is investigated, and the resulting bifurcations are studied numerically.

About the authors

I. S. Kashchenko

P. G. Demidov Yaroslavl State University

Author for correspondence.
Email: iliyask@uniyar.ac.ru

Regional Scientific and Educational Mathematical Center of Yaroslavl State University

Russian Federation, Yaroslavl

S. A. Kashchenko

P. G. Demidov Yaroslavl State University

Email: kasch@uniyar.ac.ru

Regional Scientific and Educational Mathematical Center of Yaroslavl State University

Russian Federation, Yaroslavl

I. N. Maslenikov

P. G. Demidov Yaroslavl State University

Email: igor.maslenikov16@yandex.ru

Regional Scientific and Educational Mathematical Center of Yaroslavl State University

Russian Federation, Yaroslavl

References

  1. Wu J. Theory and applications of partial functional differential equations. New York: Springer-Verlag, 1996.
  2. Cushing J. M. Integrodifferential equations and delay models in population dynamics. Springer, 1977.
  3. Kuang Y. Delay differential equations: with applications in population dynamics. Academic Press, 1993.
  4. Murray J.D. Mathematical biology II: Spatial models and biomedical applications. New York : Springer, 2001. V. 3.
  5. Gourley S.A., So J.W-H., Wu J.H. Nonlocality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics // Journal of Mathematical Sciences. 2004. V. 124. P. 5119–5153.
  6. Кащенко С.А., Логинов Д.О. Бифуркации при варьировании граничных условий в логистическом уравнении с запаздыванием и диффузией // Математические заметки. 2019. Т. 106. № 1. С. 138–143.
  7. Wright E.M. A non-linear difference-differential equation // J. fur die reine und angewandte Math. (Crelles Journal). 1955. V. 194. P. 66–87.
  8. Кащенко С.А. Динамика моделей на основе логистического уравнения с запаздыванием. М.: КРАСАНД, 2020.
  9. Кащенко С.А. , Толбей А.О. Бифуркации в логистическом уравнении с диффузией и запаздыванием в граничном условии // Матем. заметки. 2023. Т. 113. № 6. С. 940–944.
  10. Rudyi A.S. Theoretical fundamentals of the method for thermal diffusivity measurements from auto-oscillation parameters in a system with a thermal feedback // International J. of Thermophysics. 1993. V. 14. P. 159–172.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences