ON SOME CLASS OF EXTREME POINTS OF THE UNIT BALL OF A HARDY-LORENTZ SPACE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of a characterization of the set of extreme points of the unit ball in the Hardy-Lorentz space H(Λ(φ)), posed by E.M. Semenov in 1978, is considered. New necessary and sufficient conditions, under which a normalized function f in H(Λ(φ)) belongs to this set, are found. The most complete results are obtained in the case when f is the product of an outer analytic function and a Blaschke factor.

About the authors

S. V. Astashkin

Samara National Research University; Lomonosov Moscow State University, Moscow Сenter of Fundamental and Applied Mathematics; Bahcesehir University

Email: astash@ssau.ru
Moscow, Russia; Moscow, Russia; Istanbul, Turkey

References

  1. K. de Leeuw, W. Rudin, Extreme points and extreme problems in H1, Pacific J. Math., 8 (1958), 467–485.
  2. К. Гофман, Банаховы пространства аналитических функций. М.: Изд-во иностр. литер., 1963.
  3. И.Б. Брыскин, А.А. Седаев, О геометрических свойствах единичного шара в пространствах типа классов Харди, Зап. научн. сем. ЛОМИ, 39 (1974), 7–16. https://doi.org/10.1007/BF01455319
  4. S.V. Astashkin, On the set of extreme points of the unit ball of a Hardy-Lorentz space, Math. Zeitschrift (2025) 310:51. https://doi.org/10.1007/s00209-025-03763-1
  5. Исследования по линейным операторам и теории функций, 99 нерешенных задач линейного и комплексного анализа, Зап. научн. сем. ЛОМИ, 81, ред. Н.К. Никольский, В.П. Хавин, С.В. Хрущев, Изд-во “Наука”, Ленинград. отд., Л., 1978, 296 с.
  6. Linear and Complex Analysis. Problem Book. 199 Research Problems, V.P. Khavin, S.V. Khrushchev, N.K. Nikol’skii, eds., Lecture Notes in Mathematics 1043, Springer-Verlag, Berlin, 1984.
  7. Linear and Complex Analysis. Problem Book 3. Part I, V.P. Khavin, N.K. Nikol’skii, eds., Lecture Notes in Mathematics 1573, SpringerVerlag, Berlin, 1994.
  8. С.Г. Крейн, Ю.И. Петунин, Е.М. Семенов, Интерполяция линейных операторов. М.: Наука, 1978.
  9. J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, II. Function Spaces. Springer-Verlag, Berlin–New York, 1979.
  10. N.L. Carothers, S.J. Dilworth and D.A. Trautman, On the geometry of the unit sphere of the Lorentz space Lw,1, Glasgow Math. J., 34 (1992), 21–25.
  11. N.L. Carothers, B. Turett, Isometries on Lp,1, Trans. Amer. Math. Soc., 297 (1986), 95–103.
  12. П. Кусис, Введение в теорию пространств Hp. М.: Мир, 1984.
  13. Б.С. Кашин, А.А. Саакян, Ортогональные ряды. М.: Изд-во АФЦ, 1999.
  14. J. Carrillo-Alanı´s, G.P. Curbera, A note on extreme points of the unit ball of Hardy-Lorentz spaces, Proc. Amer. Math. Soc., 152 (2024), 2551–2554.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences