GENERALIZATION OF THE JULIA–CARATHE´ODORY THEOREM TO THE CASE OF SEVERAL BOUNDARY FIXED POINTS
- Authors: Kudryavtseva O.S1,2
-
Affiliations:
- Lomonosov Moscow State University, Moscow Center of Fundamental and Applied Mathematics
- Volgograd State Technical University
- Issue: Vol 522, No 1 (2025)
- Pages: 25-32
- Section: MATHEMATICS
- URL: https://jdigitaldiagnostics.com/2686-9543/article/view/683771
- DOI: https://doi.org/10.31857/S2686954325020059
- EDN: https://elibrary.ru/HYZQZS
- ID: 683771
Cite item
Abstract
Holomorphic self-maps of the unit disc with boundary fixed points are investigated. In 1982, Cowen and Pommerenke established an interesting generalization of the classical Julia— Carathe´odory theorem, which allowed them to derive an exact estimate for the derivative at the Denjoy—Wolff point on a class of functions with an arbitrary finite set of boundary fixed points. In this paper, we obtain a new generalization of the Julia—Carathe´odory theorem, which contains Cowen—Pommerenke result as a special case, moreover, it is an effective tool for solving various problems on classes of functions with fixed points.
About the authors
O. S Kudryavtseva
Lomonosov Moscow State University, Moscow Center of Fundamental and Applied Mathematics; Volgograd State Technical University
Email: kudryavceva_os@mail.ru
Moscow, Russia; Volgograd, Russia
References
- Julia G. Extension nouvelle d’un lemme de Schwarz // Acta Math. 1920. V. 42. № 1. P. 349–355.
- Caratheodory C. U¨ ber die Winkelderivierten von beschra¨nkten analytischen Funktionen // Sitzungsber. Preuss. Akad. Wiss. Berlin. 1929. P. 39–54.
- Неванлинна Р. Однозначные аналитические функции. М.–Л.: ОГИЗ, 1941.
- Ahlfors L.V. Conformal invariants: Topics in geometric function theory. New York: McGrawHill Book Company, 1973.
- Cowen C.C., Pommerenke Ch. Inequalities for the angular derivative of an analytic function in the unit disk // J. London Math. Soc. 1982. V. 26. № 2. P. 271–289.
- Валирон Ж. Аналитические функции. М.: ГИТТЛ, 1957.
- Голузин Г.М. Геометрическая теория функций комплексного переменного. M.: Наука, 1966.
- Sarason D. Sub-Hardy Hilbert spaces in the unit disk. New York: John Wiley & Sons, Inc., 1994.
- Poltoratski A., Sarason D. Aleksandrov–Clark measures // Contemp. Math. 2006. V. 393. P. 1–14.
- Matheson A., Stessin M. Applications of spectral measures // Contemp. Math. 2006. V. 393. P. 15–27.
- Saksman E. An elementary introduction to Clark measures // Topics in complex analysis and operator theory. 2007. P. 85–136.
- Кудрявцева O.C., Солодов А.П. Область однолистного покрытия на классе голоморфных отображений круга в себя с двумя граничными неподвижными точками // Матем. заметки. 2024. Т. 116. № 4. С. 632–635.
- Кудрявцева O.C., Солодов А.П. Точные области однолистности и однолистного покрытия на классе голоморфных отображений круга в себя с двумя граничными неподвижными точками // Матем. сб. 2025. Т. 216. № 4. С. 44–66.
Supplementary files
