GENERALIZATION OF THE JULIA–CARATHE´ODORY THEOREM TO THE CASE OF SEVERAL BOUNDARY FIXED POINTS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Holomorphic self-maps of the unit disc with boundary fixed points are investigated. In 1982, Cowen and Pommerenke established an interesting generalization of the classical Julia— Carathe´odory theorem, which allowed them to derive an exact estimate for the derivative at the Denjoy—Wolff point on a class of functions with an arbitrary finite set of boundary fixed points. In this paper, we obtain a new generalization of the Julia—Carathe´odory theorem, which contains Cowen—Pommerenke result as a special case, moreover, it is an effective tool for solving various problems on classes of functions with fixed points.

About the authors

O. S Kudryavtseva

Lomonosov Moscow State University, Moscow Center of Fundamental and Applied Mathematics; Volgograd State Technical University

Email: kudryavceva_os@mail.ru
Moscow, Russia; Volgograd, Russia

References

  1. Julia G. Extension nouvelle d’un lemme de Schwarz // Acta Math. 1920. V. 42. № 1. P. 349–355.
  2. Caratheodory C. U¨ ber die Winkelderivierten von beschra¨nkten analytischen Funktionen // Sitzungsber. Preuss. Akad. Wiss. Berlin. 1929. P. 39–54.
  3. Неванлинна Р. Однозначные аналитические функции. М.–Л.: ОГИЗ, 1941.
  4. Ahlfors L.V. Conformal invariants: Topics in geometric function theory. New York: McGrawHill Book Company, 1973.
  5. Cowen C.C., Pommerenke Ch. Inequalities for the angular derivative of an analytic function in the unit disk // J. London Math. Soc. 1982. V. 26. № 2. P. 271–289.
  6. Валирон Ж. Аналитические функции. М.: ГИТТЛ, 1957.
  7. Голузин Г.М. Геометрическая теория функций комплексного переменного. M.: Наука, 1966.
  8. Sarason D. Sub-Hardy Hilbert spaces in the unit disk. New York: John Wiley & Sons, Inc., 1994.
  9. Poltoratski A., Sarason D. Aleksandrov–Clark measures // Contemp. Math. 2006. V. 393. P. 1–14.
  10. Matheson A., Stessin M. Applications of spectral measures // Contemp. Math. 2006. V. 393. P. 15–27.
  11. Saksman E. An elementary introduction to Clark measures // Topics in complex analysis and operator theory. 2007. P. 85–136.
  12. Кудрявцева O.C., Солодов А.П. Область однолистного покрытия на классе голоморфных отображений круга в себя с двумя граничными неподвижными точками // Матем. заметки. 2024. Т. 116. № 4. С. 632–635.
  13. Кудрявцева O.C., Солодов А.П. Точные области однолистности и однолистного покрытия на классе голоморфных отображений круга в себя с двумя граничными неподвижными точками // Матем. сб. 2025. Т. 216. № 4. С. 44–66.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences