STOCHASTIC MODELING THE TRANSPORT COEFFICIENTS OF LIQUIDS

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A method of stochastic molecular modeling (SMM) of liquid transport coefficients has been developed. They are calculated using fluctuation-dissipation theorems, but unlike the molecular dynamics (MD) method, the phase trajectories of the system are simulated stochastically. The force acting on the molecule is determined stochastically using the created database of intermolecular forces. The effectiveness of the method is demonstrated by the example of calculating transport coefficients. It is shown that the SMM method requires much less computational resources than the MD method.

Sobre autores

V. Rudyak

Novosibirsk State University of Architecture and Civil Engineering; Institute of Thermophysics SB RAS

Autor responsável pela correspondência
Email: valery.rudyak@mail.ru
Russian Federation, Novosibirsk; Russian Federation, Novosibirsk

E. Lezhnev

Novosibirsk State University of Architecture and Civil Engineering; Institute of Thermophysics SB RAS

Autor responsável pela correspondência
Email: lionlev@yandex.ru
Russian Federation, Novosibirsk; Russian Federation, Novosibirsk

Bibliografia

  1. Chapman S., Cowling T.G. The Mathematical theory of non-uniform gases. Cambridge: Cambridge University Press, 1990. 457 p.
  2. Зубарев Д.Н. Неравновесная статистическая термодинамика. М.: Наука, 1971. 415 с.
  3. Рудяк В.Я. Статистическая аэрогидромеханика гомогенных и гетерогенных сред. Т. 2. Гидромеханика. Новосибирск: НГАСУ, 2005. 468 с.
  4. Evans D.J., Morriss G.P. Statistical mechanics of nonequilibrium liquids. Elsevier, 2013. 316 p.
  5. Reid R.C., Prausnitz J.M., Sherwood T.K. The properties of gases and liquids. New York: McGraw-Hill, 2004. 803 p.
  6. Alder B.J., Wainwright T.E. // J. Chem. Phys. 1959. V. 31. № 2. P. 459–466.
  7. Gibson J.B., Goland A.N., Milgram M., Vineyard G.N. // Phys. Rev. 1960. V. 120. P. 1229–1253.
  8. Rapaport D.C. The Art of molecular dynamics simulation. Cambridge: Cambridge University Press, 1995. 549 p.
  9. Allen M.P., Tildesley D.J. Computer simulation of liquids. Oxford: Oxford University Press, 2017. 385 p.
  10. Norman G.E., Stegailov V.V. // Comp. Physics Comm. 2002. V. 147. № 4. P. 678–683.
  11. Норман Г.Э., Стегайлов В.В. // Мат. моделирование. 2012. Т. 24. № 6. С. 3–44.
  12. Dorfman J.R. An introduction to chaos in nonequilibrium statistical mechanics. Cambridge: Cambridge University Press, 1999. 287 p.
  13. Кузнецов С.П. Динамический хаос. М.: Физматлит. 2001. 295 с.
  14. Rudyak V.Ya., Lezhnev E.V. // J. Phys.: Conf. Series. 2016. V. 738. P. 012086.
  15. Рудяк В.Я., Лежнев Е.В. // Доклады АН ВШ РФ. 2016. № 4. С. 22–32.
  16. Рудяк В.Я., Лежнев Е.В. // Матем. моделирование. 2017. Т. 29. № 3. С. 113–122.
  17. Rudyak V.Ya., Lezhnev E.V. // J. Computational Phys. 2018. V. 355. P. 95–103.
  18. Rudyak V.Ya., Lezhnev E.V. // J. Phys.: Conf. Series. 2018. V. 1105. P. 012122.
  19. Рудяк В.Я., Лежнев Е.В., Любимов Д.Н. // Вестник ТГУ. Математика и Механика. 2019. № 3. С. 105–117.
  20. Rudyak V.Ya., Lezhnev E.V. // Nanosystems: Phys., Chem., Math. 2020. V. 11. № 3. P. 285–293.
  21. Рудяк В.Я., Лежнев Е.В., Любимов Д.Н. // Доклады АН ВШ РФ. 2021. № 1 (50). С. 19–29.
  22. Hirschfelder J.O., Curtiss Ch.F., Bird R.B. Molecular theory of gases and liquids. New York, London John Wiley and Sons, Inc., Chapman and Hall, Lim., 1954.
  23. Knapstad B., Skjalsvik A., Harald A. // J. Chem. Eng. Data. 1989. V. 34. P. 37–43.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (49KB)
3.

Baixar (118KB)
4.

Baixar (22KB)

Declaração de direitos autorais © В.Я. Рудяк, Е.В. Лежнев, 2023