STOCHASTIC MODELING THE TRANSPORT COEFFICIENTS OF LIQUIDS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A method of stochastic molecular modeling (SMM) of liquid transport coefficients has been developed. They are calculated using fluctuation-dissipation theorems, but unlike the molecular dynamics (MD) method, the phase trajectories of the system are simulated stochastically. The force acting on the molecule is determined stochastically using the created database of intermolecular forces. The effectiveness of the method is demonstrated by the example of calculating transport coefficients. It is shown that the SMM method requires much less computational resources than the MD method.

About the authors

V. Ya. Rudyak

Novosibirsk State University of Architecture and Civil Engineering; Institute of Thermophysics SB RAS

Author for correspondence.
Email: valery.rudyak@mail.ru
Russian Federation, Novosibirsk; Russian Federation, Novosibirsk

E. V. Lezhnev

Novosibirsk State University of Architecture and Civil Engineering; Institute of Thermophysics SB RAS

Author for correspondence.
Email: lionlev@yandex.ru
Russian Federation, Novosibirsk; Russian Federation, Novosibirsk

References

  1. Chapman S., Cowling T.G. The Mathematical theory of non-uniform gases. Cambridge: Cambridge University Press, 1990. 457 p.
  2. Зубарев Д.Н. Неравновесная статистическая термодинамика. М.: Наука, 1971. 415 с.
  3. Рудяк В.Я. Статистическая аэрогидромеханика гомогенных и гетерогенных сред. Т. 2. Гидромеханика. Новосибирск: НГАСУ, 2005. 468 с.
  4. Evans D.J., Morriss G.P. Statistical mechanics of nonequilibrium liquids. Elsevier, 2013. 316 p.
  5. Reid R.C., Prausnitz J.M., Sherwood T.K. The properties of gases and liquids. New York: McGraw-Hill, 2004. 803 p.
  6. Alder B.J., Wainwright T.E. // J. Chem. Phys. 1959. V. 31. № 2. P. 459–466.
  7. Gibson J.B., Goland A.N., Milgram M., Vineyard G.N. // Phys. Rev. 1960. V. 120. P. 1229–1253.
  8. Rapaport D.C. The Art of molecular dynamics simulation. Cambridge: Cambridge University Press, 1995. 549 p.
  9. Allen M.P., Tildesley D.J. Computer simulation of liquids. Oxford: Oxford University Press, 2017. 385 p.
  10. Norman G.E., Stegailov V.V. // Comp. Physics Comm. 2002. V. 147. № 4. P. 678–683.
  11. Норман Г.Э., Стегайлов В.В. // Мат. моделирование. 2012. Т. 24. № 6. С. 3–44.
  12. Dorfman J.R. An introduction to chaos in nonequilibrium statistical mechanics. Cambridge: Cambridge University Press, 1999. 287 p.
  13. Кузнецов С.П. Динамический хаос. М.: Физматлит. 2001. 295 с.
  14. Rudyak V.Ya., Lezhnev E.V. // J. Phys.: Conf. Series. 2016. V. 738. P. 012086.
  15. Рудяк В.Я., Лежнев Е.В. // Доклады АН ВШ РФ. 2016. № 4. С. 22–32.
  16. Рудяк В.Я., Лежнев Е.В. // Матем. моделирование. 2017. Т. 29. № 3. С. 113–122.
  17. Rudyak V.Ya., Lezhnev E.V. // J. Computational Phys. 2018. V. 355. P. 95–103.
  18. Rudyak V.Ya., Lezhnev E.V. // J. Phys.: Conf. Series. 2018. V. 1105. P. 012122.
  19. Рудяк В.Я., Лежнев Е.В., Любимов Д.Н. // Вестник ТГУ. Математика и Механика. 2019. № 3. С. 105–117.
  20. Rudyak V.Ya., Lezhnev E.V. // Nanosystems: Phys., Chem., Math. 2020. V. 11. № 3. P. 285–293.
  21. Рудяк В.Я., Лежнев Е.В., Любимов Д.Н. // Доклады АН ВШ РФ. 2021. № 1 (50). С. 19–29.
  22. Hirschfelder J.O., Curtiss Ch.F., Bird R.B. Molecular theory of gases and liquids. New York, London John Wiley and Sons, Inc., Chapman and Hall, Lim., 1954.
  23. Knapstad B., Skjalsvik A., Harald A. // J. Chem. Eng. Data. 1989. V. 34. P. 37–43.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (49KB)
3.

Download (118KB)
4.

Download (22KB)

Copyright (c) 2023 В.Я. Рудяк, Е.В. Лежнев