Comparative genomics of carbohydrates utilization in bacteria of the family Sphaerochaetaceae: evolutionary origin of the genes encoding galacturonidase and unsaturated rhamnogalacturonyl hydrolase
- Authors: Troshina O.Y.1, Naumoff D.G.2, Rechkina V.I.1, Shcherbakova V.A.1
-
Affiliations:
- Pushchino Scientific Center for Biological Research, Russian Academy of Sciences
- Research Centre of Biotechnology, Russian Academy of Sciences
- Issue: Vol 93, No 5 (2024)
- Pages: 534-547
- Section: EXPERIMENTAL ARTICLES
- URL: https://jdigitaldiagnostics.com/0026-3656/article/view/655072
- DOI: https://doi.org/10.31857/S0026365624050034
- ID: 655072
Cite item
Abstract
A comparative analysis of carbohydrate degradation proteins encoded in currently available genomic sequences of bacteria of the family Sphaerochaetaceae, namely Sphaerochaeta associata GLS2T, S. globosa BuddyT, S. pleomorpha GrapesT, S. halotolerans 4-11T, S. halotolerans 585, Sphaerochaeta sp. S2, Sphaerochaeta sp. PS and Parasphaerochaeta coccoides SPN1T was carried out. The genomes of Sphaerochaeta spp. encode a medium-sized and diverse set of proteins potentially involved in the degradation of different classes of carbohydrates, mainly oligosaccharides. All studied genomes encode glycoside hydrolases of the GH1, GH2, GH3, GH4, GH13, GH20, GH28, GH36, GH43, GH57, GH63, GH77 and GH105 families, as well as carbohydrate esterases of the CE8 and CE9 families. All studied bacteria, with the exception of P. coccoides SPN1T, have many proteins of the GH31 family encoded in their genomes. The studied representatives of Sphaerochaetaceae do not have genes coding for endo-β-acetylmuramidase (lysozyme) of the GH23 family involved in the process of peptidoglycan turnover. However, the genomes of S. associata, S. globosa, Sphaerochaeta sp. PS and S. pleomorpha contain the exo-β-acetylmuramidase gene (GH171 family). A significant part of the genes encoding carbohydrate degradation enzymes have the closest homologues among representatives of the phyla Bacillota, Bacteroidota, and Pseudomonadota. The genomes of the studied bacteria encode proteins that could potentially be involved in the degradation of pectin. The ability of representatives of Sphaerochaetaceae to use pectin for growth, as well as the evolutionary origin of genes encoding potential α-galacturonidase (GH4 family) and unsaturated glucuronyl/rhamnogalacturonyl hydrolase (GH105 family), involved in the degradation of pectin components, were studied.
Full Text

About the authors
O. Yu. Troshina
Pushchino Scientific Center for Biological Research, Russian Academy of Sciences
Author for correspondence.
Email: oltro676@yandex.ru
Scryabin Institute of Biochemistry and Physiology of Microorganisms
Russian Federation, 142290, PushchinoD. G. Naumoff
Research Centre of Biotechnology, Russian Academy of Sciences
Email: oltro676@yandex.ru
Winogradsky Institute of Microbiology
Russian Federation, 119071, MoscowV. I. Rechkina
Pushchino Scientific Center for Biological Research, Russian Academy of Sciences
Email: oltro676@yandex.ru
Scryabin Institute of Biochemistry and Physiology of Microorganisms
Russian Federation, 142290, PushchinoV. A. Shcherbakova
Pushchino Scientific Center for Biological Research, Russian Academy of Sciences
Email: oltro676@yandex.ru
Scryabin Institute of Biochemistry and Physiology of Microorganisms
Russian Federation, 142290, PushchinoReferences
- Березина О. В., Лунина Н. А., Зверлов В. В., Наумов Д. Г., Либель В., Великодворская Г. А. Кластер генов Thermotoga neopolitana, участвующих в деградации крахмала и мальтодекстринов: молекулярная структура локуса // Мол. биология. 2003. Т. 37. С. 801‒809.
- Berezina O. V., Lunina N. A., Zverlov V. V., Naumoff D. G., Liebl W., Velikodvorskaya G. A. A cluster of Thermotoga neopolitana genes involved in the degradation of starch and maltodextrins: the molecular structure of the locus // Mol. Biol. (Moscow). 2003. V. 37. P. 678‒685.
- Кевбрин В. В., Заварзин Г. А. Влияние соединений серы на рост галофильной гомоацетатной бактерии Acetohalobium arabaticum // Микробиология. 1992. Т. 61. С. 812‒817.
- Kevbrin V. V., Zavarzin G. A. The effect of sulfur compounds on growth of halophilic homoacetic bacterium Acetohalobium arabaticum // Microbiology (Moscow). 1992. V. 61. P. 563‒571.
- Наумов Д. Г. Иерархическая классификация гликозил-гидролаз // Биохимия. 2011. Т. 76. С. 764‒780.
- Naumoff D. G. Hierarchical classification of glycoside hydrolases // Biochemistry (Moscow). 2011. V. 76. P. 622‒635.
- Abt B., Han C., Scheuner C., Lu M., Lapidus A.. Nolan M., Lucas S., Hammon N., Deshpande S., Cheng J.-F., Tapia R., Goodwin L. A., Pitluck S., Liolios K., Pagani I., Ivanova N., Mavromatis K., Mikhailova N., Huntemann M., Pati A., Chen A., Palaniappan K., Land M., Hauser L., Brambilla E.-M., Rohde M., Spring S., Gronow S., Goeker M., Woyke T., Bristow J., Eisen J. A., Markowitz V., Hugenholtz P., Kyrpides N. C., Klenk H.-P., Detter J. C. Complete genome sequence of the termite hindgut bacterium Spirochaeta coccoides type strain (SPN1(T)), reclassification in the genus Sphaerochaeta as Sphaerochaeta coccoides comb. nov and emendations of the family Spirochaetaceae and the genus Sphaerochaeta // Stand. Genom. Sci. 2012. V. 6. P. 194‒209.
- Arnold B. J., Huang I. T., Hanage W. P. Horizontal gene transfer and adaptive evolution in bacteria // Nat. Rev. Microbiol. 2022. V. 20. P. 206‒218.
- Bianchini G., Sánchez-Baracaldo P. TreeViewer: Flexible, modular software to visualise and manipulate phylogenetic trees // Ecol. Evol. 2024. V. 14. Art. e10873.
- Caro-Quintero A., Deng J., Auchtung J., Brettar I., Höfle M. G., Klappenbach J., Konstantinidis K. T. Unprecedented levels of horizontal gene transfer among spatially co-occurring Shewanella bacteria from the Baltic Sea // ISME J. 2011. V. 5. P. 131‒140.
- Caro-Quintero A., Ritalahti K. M., Cusick K. D., Löffler F. E., Konstantinidis K. T. The chimeric genome of Sphaerochaeta: nonspiral spirochetes that break with the prevalent dogma in spirochete biology // MBio. 2012. V. 3. Art. e00025-12.
- Chuvochina M., Mussig A. J., Chaumeil P. A., Skarshewski A., Rinke C., Parks D. H., Hugenholtz P. Proposal of names for 329 higher rank taxa defined in the Genome Taxonomy Database under two prokaryotic codes // FEMS Microbiol. Lett. 2023. V. 370. Art. fnad071.
- Drula E., Garron M. L., Dogan S., Lombard V., Henrissat B., Terrapon N. The carbohydrate-active enzyme database: functions and literature // Nucl. Acids Res. 2022. V. 50. P. D571‒D577.
- Frank K., Sippl M. J. High-performance signal peptide prediction based on sequence alignment techniques // Bioinformatics. 2008. V. 24. P. 2172–2176.
- Gharechahi J., Sarikhan S., Han J. L., Ding X. Z., Salekdeh G. H. Functional and phylogenetic analyses of camel rumen microbiota associated with different lignocellulosic substrates // NPJ Biofilms Microbiomes. 2022. V. 8. Art. 46.
- Gilchrist C. L., Booth T. J., van Wersch B., van Grieken L., Medema M. H., Chooi Y. H. cblaster: a remote search tool for rapid identification and visualization of homologous gene clusters // Bioinform. Adv. 2021. V. 1. Art. vbab016.
- Gilroy R., Leng J., Ravi A., Adriaenssens E. M., Oren A., Baker D., La Ragione R. M., Proudman C., Pallen M. J. Metagenomic investigation of the equine faecal microbiome reveals extensive taxonomic diversity // PeerJ. 2022. V. 10. Art. 13084.
- Gilroy R., Ravi A., Getino M., Pursley I., Horton D. L., Alikhan N. F., Baker D., Gharbi K., Hall N., Watson M., Adriaenssens E. M., Foster-Nyarko E., Jarju S., Secka A., Antonio M., Oren A., Chaudhuri R. R., La Ragione R., Hildebrand F., Pallen M. J. Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture // PeerJ. 2021. V. 9. Art. 10941.
- Grouzdev D. S., Bidzhieva S. K., Sokolova D. S., Tourova T. P., Patutina E. O., Poltaraus A. B., Nazina T. N. Draft genome sequence of a fermenting bacterium, “Sphaerochaeta halotolerans” 4-11(T), from a low-temperature petroleum reservoir in Russia // Microbiol. Res. Announc. 2018. V. 7. Art. e01345-18.
- Hall B. G., Pikis A., Thompson J. Evolution and biochemistry of family 4 glycosidases: implications for assigning enzyme function in sequence annotations // Mol. Biol. Evol. 2009. V. 26. P. 2487‒2497.
- Itoh T., Ochiai A., Mikami B., Hashimoto W., Murata K. A novel glycoside hydrolase family 105: the structure of family 105 unsaturated rhamnogalacturonyl hydrolase complexed with a disaccharide in comparison with family 88 enzyme complexed with the disaccharide // J. Mol. Biol. 2006. V. 360. P. 573‒585.
- Kanehisa M., Sato Y., Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences // J. Mol. Biol. 2016. V. 428. P. 726‒731.
- Keggi C., Doran-Peterson J. The homogalacturonan deconstruction system of Paenibacillus amylolyticus 27C64 requires no extracellular pectin methylesterase and has significant industrial potential // Appl. Environ. Microbiol. 2020. V. 86. Art. e02275-19.
- Keggi C., Doran-Peterson J. Paenibacillus amylolyticus 27C64 has a diverse set of carbohydrate-active enzymes and complete pectin deconstruction system // J. Ind. Microbiol. Biotechnol. 2019. V. 46. P. 1‒11.
- Klingl A., Pickl C., Flechsler J. Archaeal cell walls // Subcell Biochem. / Ed. Kuhn A. Springer Cham., 2019. V. 92. P. 471‒493. https://doi.org/10.1007/978-3-030-18768-2_14
- Morrison P. K., Newbold C. J. , Jones E., Worgan H. J., Grove-White D.H., Dugdale A. H., Barfoot C., Harris P. A., Argo C. M. The equine gastrointestinal microbiome: impacts of weight-loss // BMC Vet. Res. 2020. V. 16. P. 78.
- Müller M., Calvert M., Hottmann I., Kluj R. M., Teufel T., Balbuchta K., Engelbrecht A., Selim K. A., Xu Q., Borisova M., Titz A., Mayer C. The exo-β-N-acetylmuramidase NamZ from Bacillus subtilis is the founding member of a family of exo-lytic peptidoglycan hexosaminidases // J. Biol. Chem. 2021. V. 296. Art. 100519.
- Nazina T. N., Bidzhieva S. K., Grouzdev D. S., Löffler F. E. Sphaerochaeta // Bergey’s Manual of Systematics of Archaea and Bacteria / Eds. Trujillo M. E., Dedysh S., DeVos P., Hedlund B., Kämpfer P., Rainey F. A., Whitman W. B. John Wiley & Sons, Inc., in association with Bergey’s Manual Trust, 2021. P. 1‒13. https://doi.org/10.1002/9781118960608.gbm02038
- Nazina T. N., Bidzhieva S. K., Grouzdev D. S., Löffler F. E. Sphaerochaetaceae // Bergey’s Manual of Systematics of Archaea and Bacteria / Eds. Trujillo M. E., Dedysh S., DeVos P., Hedlund B., Kämpfer P., Rainey F. A., Whitman W. B. John Wiley & Sons, Inc., in association with Bergey’s Manual Trust, 2022. P. 1‒6. https://doi.org/10.1002/9781118960608.fbm00390
- Ndeh D., Rogowski A., Cartmell A., Luis A. S., Baslé A., Gray J., Venditto I., Briggs J., Zhang X., Labourel A., Terrapon N., Buffetto F., Nepogodiev S., Xiao Y., Field R. A., Zhu Y., O’Neil M.A., Urbanowicz B. R., York W. S., Davies G. J., Abbott D. W., Ralet M. C., Martens E. C., Henrissat B., Gilbert H. J. Complex pectin metabolism by gut bacteria reveals novel catalytic functions // Nature. 2017. V. 544. P. 65‒70.
- Nguyen P., Eshaque R., Garland B. A., Dang A., Suits M. D.L. Degradation of chondroitin sulfate A by a PUL-like operon in Tannerella forsythia // PLoS One. 2022. V. 17. Art. e0272904.
- O’Sullivan O., O’Callaghan J., Sangrador-Vegas A., McAuliffe O., Slattery L., Kaleta P., Callanan M., Fitzgeral G. F., Ross R. P., Beresford T. Comparative genomics of lactic acid bacteria reveals a niche-specific gene set // BMC Microbiol. 2009. V. 9. Art. 50.
- Ochman H., Lawrence J. G., Groisman E. A. Lateral gene transfer and the nature of bacterial innovation // Nature. 2000. V. 405. P. 299‒304.
- Tamura K., Stecher G., Kumar S. // MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021. V. 38. P. 3022‒3027.
- Tang S., Xin Y., Ma Y., Xu X., Zhao S., Cao J. Screening of microbes associated with swine growth and fat deposition traits across the intestinal tract // Front. Microbiol. 2020. V. 11. Art. 586776.
- Thompson J., Pikis A., Rich J., Hall B. G., Withers S. G. α-Galacturonidase(s): a new class of family 4 glycoside hydrolases with strict specificity and a unique CHEV active site motif // FEBS Lett. 2013. V. 587. P. 799‒803.
- Troshina O., Oshurkova V., Suzina N., Machulin A., Ariskina E., Vinokurova N., Kopitsyn D., Novikov A., Shcherbakova V. Sphaerochaeta associata sp nov., a spherical spirochaete isolated from cultures of Methanosarcina mazei JL01 // Int. J. Syst. Evol. Microbiol. 2015. V. 65. P. 4315‒4322.
- Troshina O. Y., Tepeeva A. N., Arzamastseva V. O., Whitman W. B., Varghese N. J., Shapiro N., Woyke T., Kyrpides N. C., Vasilenko O. V. Complete genome sequence of the type strain bacterium Sphaerochaeta associata GLS2T (VKM B-2742)T // J. Bioinform. Genom. 2024. V. 1. Art. 23. http://dx.doi.org/10.18454/jbg.2024.23.1
- Ulmer J. E., Vilén E. M., Namburi R. B., Benjdia A., Beneteau J., Malleron A., Bonnaffé D., Driguez P. A., Descroix K., Lassalle G., Le Narvor C., Sandström C., Spillmann D., Berteau O. Characterization of glycosaminoglycan (GAG) sulfatases from the human gut symbiont Bacteroides thetaiotaomicron reveals the first GAG-specific bacterial endosulfatase // J. Biol. Chem. 2014. V. 289. P. 24289‒24303.
- Zheng J., Ge Q., Yan Y., Zhang X., Huang L., Yin Y. dbCAN3: automated carbohydrate-active enzyme and substrate annotation // Nucl. Acids Res. 2023. V. 51. P. W115‒W121.
Supplementary files
