Comparative genomics of carbohydrates utilization in bacteria of the family Sphaerochaetaceae: evolutionary origin of the genes encoding galacturonidase and unsaturated rhamnogalacturonyl hydrolase

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A comparative analysis of carbohydrate degradation proteins encoded in currently available genomic sequences of bacteria of the family Sphaerochaetaceae, namely Sphaerochaeta associata GLS2T, S. globosa BuddyT, S. pleomorpha GrapesT, S. halotolerans 4-11T, S. halotolerans 585, Sphaerochaeta sp. S2, Sphaerochaeta sp. PS and Parasphaerochaeta coccoides SPN1T was carried out. The genomes of Sphaerochaeta spp. encode a medium-sized and diverse set of proteins potentially involved in the degradation of different classes of carbohydrates, mainly oligosaccharides. All studied genomes encode glycoside hydrolases of the GH1, GH2, GH3, GH4, GH13, GH20, GH28, GH36, GH43, GH57, GH63, GH77 and GH105 families, as well as carbohydrate esterases of the CE8 and CE9 families. All studied bacteria, with the exception of P. coccoides SPN1T, have many proteins of the GH31 family encoded in their genomes. The studied representatives of Sphaerochaetaceae do not have genes coding for endo-β-acetylmuramidase (lysozyme) of the GH23 family involved in the process of peptidoglycan turnover. However, the genomes of S. associata, S. globosa, Sphaerochaeta sp. PS and S. pleomorpha contain the exo-β-acetylmuramidase gene (GH171 family). A significant part of the genes encoding carbohydrate degradation enzymes have the closest homologues among representatives of the phyla Bacillota, Bacteroidota, and Pseudomonadota. The genomes of the studied bacteria encode proteins that could potentially be involved in the degradation of pectin. The ability of representatives of Sphaerochaetaceae to use pectin for growth, as well as the evolutionary origin of genes encoding potential α-galacturonidase (GH4 family) and unsaturated glucuronyl/rhamnogalacturonyl hydrolase (GH105 family), involved in the degradation of pectin components, were studied.

Full Text

Restricted Access

About the authors

O. Yu. Troshina

Pushchino Scientific Center for Biological Research, Russian Academy of Sciences

Author for correspondence.
Email: oltro676@yandex.ru

Scryabin Institute of Biochemistry and Physiology of Microorganisms

Russian Federation, 142290, Pushchino

D. G. Naumoff

Research Centre of Biotechnology, Russian Academy of Sciences

Email: oltro676@yandex.ru

Winogradsky Institute of Microbiology

Russian Federation, 119071, Moscow

V. I. Rechkina

Pushchino Scientific Center for Biological Research, Russian Academy of Sciences

Email: oltro676@yandex.ru

Scryabin Institute of Biochemistry and Physiology of Microorganisms

Russian Federation, 142290, Pushchino

V. A. Shcherbakova

Pushchino Scientific Center for Biological Research, Russian Academy of Sciences

Email: oltro676@yandex.ru

Scryabin Institute of Biochemistry and Physiology of Microorganisms

Russian Federation, 142290, Pushchino

References

  1. Березина О. В., Лунина Н. А., Зверлов В. В., Наумов Д. Г., Либель В., Великодворская Г. А. Кластер генов Thermotoga neopolitana, участвующих в деградации крахмала и мальтодекстринов: молекулярная структура локуса // Мол. биология. 2003. Т. 37. С. 801‒809.
  2. Berezina O. V., Lunina N. A., Zverlov V. V., Naumoff D. G., Liebl W., Velikodvorskaya G. A. A cluster of Thermotoga neopolitana genes involved in the degradation of starch and maltodextrins: the molecular structure of the locus // Mol. Biol. (Moscow). 2003. V. 37. P. 678‒685.
  3. Кевбрин В. В., Заварзин Г. А. Влияние соединений серы на рост галофильной гомоацетатной бактерии Acetohalobium arabaticum // Микробиология. 1992. Т. 61. С. 812‒817.
  4. Kevbrin V. V., Zavarzin G. A. The effect of sulfur compounds on growth of halophilic homoacetic bacterium Acetohalobium arabaticum // Microbiology (Moscow). 1992. V. 61. P. 563‒571.
  5. Наумов Д. Г. Иерархическая классификация гликозил-гидролаз // Биохимия. 2011. Т. 76. С. 764‒780.
  6. Naumoff D. G. Hierarchical classification of glycoside hydrolases // Biochemistry (Moscow). 2011. V. 76. P. 622‒635.
  7. Abt B., Han C., Scheuner C., Lu M., Lapidus A.. Nolan M., Lucas S., Hammon N., Deshpande S., Cheng J.-F., Tapia R., Goodwin L. A., Pitluck S., Liolios K., Pagani I., Ivanova N., Mavromatis K., Mikhailova N., Huntemann M., Pati A., Chen A., Palaniappan K., Land M., Hauser L., Brambilla E.-M., Rohde M., Spring S., Gronow S., Goeker M., Woyke T., Bristow J., Eisen J. A., Markowitz V., Hugenholtz P., Kyrpides N. C., Klenk H.-P., Detter J. C. Complete genome sequence of the termite hindgut bacterium Spirochaeta coccoides type strain (SPN1(T)), reclassification in the genus Sphaerochaeta as Sphaerochaeta coccoides comb. nov and emendations of the family Spirochaetaceae and the genus Sphaerochaeta // Stand. Genom. Sci. 2012. V. 6. P. 194‒209.
  8. Arnold B. J., Huang I. T., Hanage W. P. Horizontal gene transfer and adaptive evolution in bacteria // Nat. Rev. Microbiol. 2022. V. 20. P. 206‒218.
  9. Bianchini G., Sánchez-Baracaldo P. TreeViewer: Flexible, modular software to visualise and manipulate phylogenetic trees // Ecol. Evol. 2024. V. 14. Art. e10873.
  10. Caro-Quintero A., Deng J., Auchtung J., Brettar I., Höfle M. G., Klappenbach J., Konstantinidis K. T. Unprecedented levels of horizontal gene transfer among spatially co-occurring Shewanella bacteria from the Baltic Sea // ISME J. 2011. V. 5. P. 131‒140.
  11. Caro-Quintero A., Ritalahti K. M., Cusick K. D., Löffler F. E., Konstantinidis K. T. The chimeric genome of Sphaerochaeta: nonspiral spirochetes that break with the prevalent dogma in spirochete biology // MBio. 2012. V. 3. Art. e00025-12.
  12. Chuvochina M., Mussig A. J., Chaumeil P. A., Skarshewski A., Rinke C., Parks D. H., Hugenholtz P. Proposal of names for 329 higher rank taxa defined in the Genome Taxonomy Database under two prokaryotic codes // FEMS Microbiol. Lett. 2023. V. 370. Art. fnad071.
  13. Drula E., Garron M. L., Dogan S., Lombard V., Henrissat B., Terrapon N. The carbohydrate-active enzyme database: functions and literature // Nucl. Acids Res. 2022. V. 50. P. D571‒D577.
  14. Frank K., Sippl M. J. High-performance signal peptide prediction based on sequence alignment techniques // Bioinformatics. 2008. V. 24. P. 2172–2176.
  15. Gharechahi J., Sarikhan S., Han J. L., Ding X. Z., Salekdeh G. H. Functional and phylogenetic analyses of camel rumen microbiota associated with different lignocellulosic substrates // NPJ Biofilms Microbiomes. 2022. V. 8. Art. 46.
  16. Gilchrist C. L., Booth T. J., van Wersch B., van Grieken L., Medema M. H., Chooi Y. H. cblaster: a remote search tool for rapid identification and visualization of homologous gene clusters // Bioinform. Adv. 2021. V. 1. Art. vbab016.
  17. Gilroy R., Leng J., Ravi A., Adriaenssens E. M., Oren A., Baker D., La Ragione R. M., Proudman C., Pallen M. J. Metagenomic investigation of the equine faecal microbiome reveals extensive taxonomic diversity // PeerJ. 2022. V. 10. Art. 13084.
  18. Gilroy R., Ravi A., Getino M., Pursley I., Horton D. L., Alikhan N. F., Baker D., Gharbi K., Hall N., Watson M., Adriaenssens E. M., Foster-Nyarko E., Jarju S., Secka A., Antonio M., Oren A., Chaudhuri R. R., La Ragione R., Hildebrand F., Pallen M. J. Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture // PeerJ. 2021. V. 9. Art. 10941.
  19. Grouzdev D. S., Bidzhieva S. K., Sokolova D. S., Tourova T. P., Patutina E. O., Poltaraus A. B., Nazina T. N. Draft genome sequence of a fermenting bacterium, “Sphaerochaeta halotolerans” 4-11(T), from a low-temperature petroleum reservoir in Russia // Microbiol. Res. Announc. 2018. V. 7. Art. e01345-18.
  20. Hall B. G., Pikis A., Thompson J. Evolution and biochemistry of family 4 glycosidases: implications for assigning enzyme function in sequence annotations // Mol. Biol. Evol. 2009. V. 26. P. 2487‒2497.
  21. Itoh T., Ochiai A., Mikami B., Hashimoto W., Murata K. A novel glycoside hydrolase family 105: the structure of family 105 unsaturated rhamnogalacturonyl hydrolase complexed with a disaccharide in comparison with family 88 enzyme complexed with the disaccharide // J. Mol. Biol. 2006. V. 360. P. 573‒585.
  22. Kanehisa M., Sato Y., Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences // J. Mol. Biol. 2016. V. 428. P. 726‒731.
  23. Keggi C., Doran-Peterson J. The homogalacturonan deconstruction system of Paenibacillus amylolyticus 27C64 requires no extracellular pectin methylesterase and has significant industrial potential // Appl. Environ. Microbiol. 2020. V. 86. Art. e02275-19.
  24. Keggi C., Doran-Peterson J. Paenibacillus amylolyticus 27C64 has a diverse set of carbohydrate-active enzymes and complete pectin deconstruction system // J. Ind. Microbiol. Biotechnol. 2019. V. 46. P. 1‒11.
  25. Klingl A., Pickl C., Flechsler J. Archaeal cell walls // Subcell Biochem. / Ed. Kuhn A. Springer Cham., 2019. V. 92. P. 471‒493. https://doi.org/10.1007/978-3-030-18768-2_14
  26. Morrison P. K., Newbold C. J. , Jones E., Worgan H. J., Grove-White D.H., Dugdale A. H., Barfoot C., Harris P. A., Argo C. M. The equine gastrointestinal microbiome: impacts of weight-loss // BMC Vet. Res. 2020. V. 16. P. 78.
  27. Müller M., Calvert M., Hottmann I., Kluj R. M., Teufel T., Balbuchta K., Engelbrecht A., Selim K. A., Xu Q., Borisova M., Titz A., Mayer C. The exo-β-N-acetylmuramidase NamZ from Bacillus subtilis is the founding member of a family of exo-lytic peptidoglycan hexosaminidases // J. Biol. Chem. 2021. V. 296. Art. 100519.
  28. Nazina T. N., Bidzhieva S. K., Grouzdev D. S., Löffler F. E. Sphaerochaeta // Bergey’s Manual of Systematics of Archaea and Bacteria / Eds. Trujillo M. E., Dedysh S., DeVos P., Hedlund B., Kämpfer P., Rainey F. A., Whitman W. B. John Wiley & Sons, Inc., in association with Bergey’s Manual Trust, 2021. P. 1‒13. https://doi.org/10.1002/9781118960608.gbm02038
  29. Nazina T. N., Bidzhieva S. K., Grouzdev D. S., Löffler F. E. Sphaerochaetaceae // Bergey’s Manual of Systematics of Archaea and Bacteria / Eds. Trujillo M. E., Dedysh S., DeVos P., Hedlund B., Kämpfer P., Rainey F. A., Whitman W. B. John Wiley & Sons, Inc., in association with Bergey’s Manual Trust, 2022. P. 1‒6. https://doi.org/10.1002/9781118960608.fbm00390
  30. Ndeh D., Rogowski A., Cartmell A., Luis A. S., Baslé A., Gray J., Venditto I., Briggs J., Zhang X., Labourel A., Terrapon N., Buffetto F., Nepogodiev S., Xiao Y., Field R. A., Zhu Y., O’Neil M.A., Urbanowicz B. R., York W. S., Davies G. J., Abbott D. W., Ralet M. C., Martens E. C., Henrissat B., Gilbert H. J. Complex pectin metabolism by gut bacteria reveals novel catalytic functions // Nature. 2017. V. 544. P. 65‒70.
  31. Nguyen P., Eshaque R., Garland B. A., Dang A., Suits M. D.L. Degradation of chondroitin sulfate A by a PUL-like operon in Tannerella forsythia // PLoS One. 2022. V. 17. Art. e0272904.
  32. O’Sullivan O., O’Callaghan J., Sangrador-Vegas A., McAuliffe O., Slattery L., Kaleta P., Callanan M., Fitzgeral G. F., Ross R. P., Beresford T. Comparative genomics of lactic acid bacteria reveals a niche-specific gene set // BMC Microbiol. 2009. V. 9. Art. 50.
  33. Ochman H., Lawrence J. G., Groisman E. A. Lateral gene transfer and the nature of bacterial innovation // Nature. 2000. V. 405. P. 299‒304.
  34. Tamura K., Stecher G., Kumar S. // MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021. V. 38. P. 3022‒3027.
  35. Tang S., Xin Y., Ma Y., Xu X., Zhao S., Cao J. Screening of microbes associated with swine growth and fat deposition traits across the intestinal tract // Front. Microbiol. 2020. V. 11. Art. 586776.
  36. Thompson J., Pikis A., Rich J., Hall B. G., Withers S. G. α-Galacturonidase(s): a new class of family 4 glycoside hydrolases with strict specificity and a unique CHEV active site motif // FEBS Lett. 2013. V. 587. P. 799‒803.
  37. Troshina O., Oshurkova V., Suzina N., Machulin A., Ariskina E., Vinokurova N., Kopitsyn D., Novikov A., Shcherbakova V. Sphaerochaeta associata sp nov., a spherical spirochaete isolated from cultures of Methanosarcina mazei JL01 // Int. J. Syst. Evol. Microbiol. 2015. V. 65. P. 4315‒4322.
  38. Troshina O. Y., Tepeeva A. N., Arzamastseva V. O., Whitman W. B., Varghese N. J., Shapiro N., Woyke T., Kyrpides N. C., Vasilenko O. V. Complete genome sequence of the type strain bacterium Sphaerochaeta associata GLS2T (VKM B-2742)T // J. Bioinform. Genom. 2024. V. 1. Art. 23. http://dx.doi.org/10.18454/jbg.2024.23.1
  39. Ulmer J. E., Vilén E. M., Namburi R. B., Benjdia A., Beneteau J., Malleron A., Bonnaffé D., Driguez P. A., Descroix K., Lassalle G., Le Narvor C., Sandström C., Spillmann D., Berteau O. Characterization of glycosaminoglycan (GAG) sulfatases from the human gut symbiont Bacteroides thetaiotaomicron reveals the first GAG-specific bacterial endosulfatase // J. Biol. Chem. 2014. V. 289. P. 24289‒24303.
  40. Zheng J., Ge Q., Yan Y., Zhang X., Huang L., Yin Y. dbCAN3: automated carbohydrate-active enzyme and substrate annotation // Nucl. Acids Res. 2023. V. 51. P. W115‒W121.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Additional Materials
Download (782KB)
3. Fig. 1 (a, b). Phylogenetic tree of proteins of the GH105 glycoside hydrolase family encoded in the genomes of Sphaerochaetaceae constructed by the maximum likelihood method: a ‒ the figure shows the phylogenetic position of the WP_244772448.1 protein from S. associata and its homologues; the analysis included 94 amino acid sequences; b ‒ the figure shows the position of the proteins WP_244773341.1, WP_244771860.1, WP_244773955.1 from S. associata and their homologues. The analysis included 74 amino acid sequences. Color legend for large taxa is indicated in the figure at the top left. Proteins with specific enzymatic activities, namely d-4,5-unsaturated rhamnogalacturonyl hydrolase (WP_014906487.1, WP_003243366.1, WP_011109152.1) and d-4,5-unsaturated α-galacturonidase (WP_008760990.1, WP_011107571.1, WP_123066362.1) are labeled. Bootstrap support values ​​≥50% are shown at branch points. The scale indicates the number of substitutions per amino acid sequence position. To simplify the display of trees, some clusters were collapsed into triangles with sides corresponding to the average branch length in a given cluster. The number of sequences is indicated next to the clusters. Sequence numbers and organisms in collapsed clusters are given in Table S3 (in order from top to bottom) in the Appendix.

Download (581KB)
4. Fig. 2. Maximum-likelihood phylogenetic tree of potential GH4-family α-galacturonidases encoded in Sphaerochaetaceae genomes. The analysis included 67 protein sequences. Bootstrap values ​​≥50% are indicated at branch points. Scale bars indicate the number of substitutions per amino acid sequence position. Color legend for taxa is indicated in the figure at the top left. Proteins with α-galacturonidase activity WP_003244472.1 and WP_012995698.1 are labeled. To simplify the display of trees, some clusters have been collapsed into triangles with sides corresponding to the average branch length in a given cluster. Sequence counts are indicated next to the clusters. Sequence numbers and organisms in collapsed clusters are given in Table S3 in the Appendix.

Download (2MB)

Copyright (c) 2024 Russian Academy of Sciences