Cellulolytic potential of new strains of soil streptomycetes
- Authors: Bokov N.A.1,2, Bakulina A.V.1, Bessolitsyna E.A.1, Shirokikh I.G.1,2
-
Affiliations:
- Federal Agricultural Scientific Center of the North-East named N.V.Rudnitsky
- Vyatka State University
- Issue: Vol 93, No 5 (2024)
- Pages: 635-644
- Section: EXPERIMENTAL ARTICLES
- URL: https://jdigitaldiagnostics.com/0026-3656/article/view/655080
- DOI: https://doi.org/10.31857/S0026365624050111
- ID: 655080
Cite item
Abstract
In order to obtain new strains of cellulolytic microorganisms for use in technologies for processing plant and other cellulose-containing waste, four new bacterial strains of the genus Streptomyces have been isolated from various sources. In tests with Congo red, the isolates’ ability to degrade carboxymethylcellulose (CMC), microcrystalline cellulose (MCC) and natural cellulose–containing materials – straw, birch and oak sawdust was determined. The activity of cellulase was quantified during fermentation of straw. On media with each of the model carbon sources, the radial growth rate was determined as an indicator characterizing the ability of isolates to colonize various substrates. The conjugate characteristic of cellulase activity and radial growth rate on substrates of various natures made it possible to assess the prospects for further use of the studied strains as destructors of cellulose-containing waste. The strain Streptomyces thermocarboxydus T1-3 was the leader in the studied sample, characterized by the most active enzymatic hydrolysis of all model cellulose sources, a high radial growth rate (up to 87±3 microns/hour), and the achievement of maximum cellulase activity (171.25±8.13 U/ml) during straw fermentation within 24 hours.
Full Text

About the authors
N. A. Bokov
Federal Agricultural Scientific Center of the North-East named N.V.Rudnitsky; Vyatka State University
Author for correspondence.
Email: nikita-bokov@mail.ru
Russian Federation, 610007, Kirov; 610000, Kirov
A. V. Bakulina
Federal Agricultural Scientific Center of the North-East named N.V.Rudnitsky
Email: nikita-bokov@mail.ru
Russian Federation, 610007, Kirov
E. A. Bessolitsyna
Federal Agricultural Scientific Center of the North-East named N.V.Rudnitsky
Email: nikita-bokov@mail.ru
Russian Federation, 610007, Kirov
I. G. Shirokikh
Federal Agricultural Scientific Center of the North-East named N.V.Rudnitsky; Vyatka State University
Email: nikita-bokov@mail.ru
Russian Federation, 610007, Kirov; 610000, Kirov
References
- Билай В. И. Методы экспериментальной микологии. М.: Рипол Классик, 1973. 240 с.
- Гаузе Г. Ф., Преображенская Т. П., Свешникова М. А., Терехова Л. П. Максимова Т. С. Определитель актиномицетов. М.: Наука, 1983. 245 с.
- Громова Н. Ю. Теоретические аспекты биоконверсии целлюлозосодержащих отходов // Известия Международной академии аграрного образования. 2012. Т. 1. С. 8–12.
- Нетрусов А. И., Егорова М. А., Захарчук Л. М., Динариева Т. Ю. Практикум по микробиологии. М.: Академия, 2005. 608 с.
- Рожкова А. М., Кислицин В. Ю. Редактирование геномов мицелиальных грибов: применение системы CRISPR/Cas // Успехи биологической химии. 2021. Т. 61. С. 253–294.
- Филиппова С. Н., Виноградова К. А. Программируемая клеточная смерть как одна из стадий дифференцировки стрептомицетов // Микробиология. 2017. Т. 86. С. 421–438. https://doi.org/10.7868/S0026365617040073
- Filippova S. N., Vinogradova K. A. Programmed cell death as one of the stages of streptomycete differentiation // Microbiology (Moscow). 2017. V. 86. P. 439‒454.
- Bispo A. S.R, Andrade J. P., Souza D. T., Teles Z. N.S., Nascimento R. P. Utilization of agroindustrial by-products as substrate in endoglucanase production by Streptomyces diastaticus PA-01 under submerged fermentation // Braz. J. Chem. Eng. 2018. V. 35. Р. 429–440. https://doi.org/10.1590/0104-6632.20180352s20160415
- Book A. J., Lewin G. R., McDonald B.R., Takasuka T. E., Wendt-Pienkowski Е., Doering D. T., Suh S., Raffa K. F., Fox B. G., Currie C. R. Evolution of high cellulolytic activity in symbiotic Streptomyces through selection of expanded gene content and coordinate gene expression // PLoS Biol. 2016. V. 14. № 6. P. 1–21. https://doi.org/10.1371/journal.pbio.1002475
- Cecchini D. A., Pepe O., Pennacchio A., Fagnano M., Faraco V. Directed evolution of the bacterial endo-β-1,4-glucanase from Streptomyces sp. G12 towards improved catalysts for lignocellulose conversion // Amb. Express. 2018. V. 8. Art. 74. https://doi.org/10.1186/s13568-018-0602-7
- Celaya-Herrera S., Casados-Vázquez L. E., Valdez-Vazquez I., Barona-Gómez F., Bideshi D. K., Barboza-Corona J. E. A cellulolytic Streptomyces sp. isolated from a highly oligotrophic niche shows potential for hydrolyzing agricultural wastes // Bioenerg. Res. 2021. V. 14. P. 333–343. https://doi.org/10.1007/s12155-020-10174-z
- Escudero-Agudelo J., Martínez-Villalobos J., Arocha-Garza H., Galán-Wong L.J., Avilés-Arnaut H., De la Torre-Zavala S. Systematic bioprospection for cellulolytic actinomycetes in the Chihuahuan Desert: isolation and enzymatic profiling // Peer J. 2023. V. 11. Art. e16119. https://doi.org/10.7717/peerj.16119
- Franco-Cirigliano M. N., de Carvalho-Rezende R., Gravina-Oliveira M. P., Pereira P. H. F., Do Nascimento R. P., Bon E. P. D. S., Macrae A., Coelho R. R. R. Streptomyces misionensis PESB-25 produces a thermoacidophilic endoglucanase using sugarcane bagasse and corn steep liquor as the sole organic substrates // Biomed. Res. Int. 2013. V. 2013. Art. 584207. https://doi.org/10.1155/2013/584207
- Ghose T. K. Measurement of cellulase activities // Pure & Appl. Chem. 1987. V. 59. P. 257–268.
- Gupta P., Samant K., Sahu A. Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential // Int. J. Microbiol. 2012. V. 2012. Art. 578925. https://doi.org/10.1155/2012/578925
- Jayasekara S., Ratnayake R. Microbial cellulases: an overview and applications. Cellulose. IntechOpen. 2019. 130 p. https://doi.org/10.5772/intechopen.84531
- Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. Practical Streptomyces genetics. The John Innes Foundation; Norwich, UK: 2000. 620 p.
- Komaki H. Recent progress of reclassification of the genus Streptomyces // Microorganisms. 2023. V. 11. Art. 831. https://doi.org/10.3390/microorganisms11040831
- Kormanec J., Rezuchova B., Homerova D., Csolleiova D., Sevcikova B., Novakova R., Feckova L. Recent achievements in the generation of stable genome alterations/mutations in species of the genus Streptomyces // Appl. Microbiol. Biotechnol. 2019. V. 103. P. 5463–5482. https://doi.org/10.1007/s00253-019-09901-0
- López-Mondéjar R., Zühlke D., Becher D., Riedel K., Baldrian P. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems // Sci. Rep. 2016. V. 6. Art. 25279. https://doi.org/10.1038/srep25279
- Marushima K., Ohnishi Y., Horinouchi S. CebR as a master regulator for cellulose/cellooligosaccharide catabolism affects morphological development in Streptomyces griseus // J. Bacteriol. 2009. V. 191. P. 5930–5940. https://doi.org/10.1128/jb.00703-09
- Rajagopal G., Kannan S. Systematic characterization of potential cellulolytic marine actinobacteria Actinoalloteichus sp. MHA15 // Biotechnol. Rep. 2017. V. 13. P. 30–36. https://doi.org/10.1016/j.btre.2016.12.003
- Ryan M. C., Stucky M., Wakefield C., Melott J. M., Akbani R., Weinstein J. N., Broom B. M. Interactive Clustered Heat Map Builder: An easy web-based tool for creating sophisticated clustered heat maps // F1000Research. 2019. V. 8. P. 1–17. https://doi.org/10.12688/f1000research.20590.2
- Sambrook J., Fritch T., Maniatis T. Molecular cloning: a laboratory manual. NY.: Cold Spring Harbor Laboratory Press, 1983. 545 p. https://doi.org/10.1016/0307-4412(83)90068-7
- Scalbert A. Antimicrobial properties of tannins // Phytochemistry. 1991. V. 30. P. 3875–3883. https://doi.org/10.1016/0031-9422(91)83426-L
- Shrestha S., Khatiwada J. R., Kognou A. L.M., Chio C., Qin W. Biomass-degrading enzyme(s) production and biomass degradation by a novel Streptomyces thermocarboxydus // Curr. Microbiol. 2023. V. 80. Art. 71. https://doi.org/10.1007/s00284-022-03174-z
- Sievers F., Higgins D. G. Clustal omega // Curr. Prot. Bioinform. 2014. V. 48. P. 3.13.1–3.13.16. https://doi.org/10.1002/0471250953.bi0313s48
- Tamura K., Stecher G., Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11 // Mol. Biol. Evol. 2021. V. 38. P. 3022–3027. https://doi.org/10.1093/molbev/msab120
- Waheeb M. S., Elkhatib W. F., Yassien M. A., Hassouna N. A. Production of cellulase by soil isolated Streptomyces sp. // Arch. Pharm. Sci. ASU. 2021. V. 5. Р. 225–233.
- Wood P. J., Erfle J. D., Teather R. M. Use of complex formation between Congo Red and polysaccharides in detection and assay of polysaccharide hydrolases // Methods Enzymol. 1988. V. 160. P. 59–74.
- Ye S., Enghiad B., Zhao H., Takano E. Fine-tuning the regulation of Cas9 expression levels for efficient CRISPR-Cas9 mediated recombination in Streptomyces // J. Ind. Microbiol. Biotechnol. 2020. V. 47. Р. 413–423.
Supplementary files
