Cold adaptation in a psychrotolerant micromycete Mucor flavus

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

To study the mechanisms of protection of the cell membranes and macromolecules from cold, the composition of osmolytes, membrane lipids, and their fatty acids in a submerged culture of Mucor flavus was analyzed in growth dynamics at 20 and 4°C. This micromycete is psychrotolerant, having a wide growth temperature range (from –2 to 25°C) with an optimum at 20°C. Mucor flavus has a high growth rate (15 mm/day at 20°C, 4 mm/day at 0°C). At both temperatures, phosphatidic acids and phosphatidylethanolamines were predominant in the composition of membrane lipids, while phosphatidylcholines were the minor components. The main difference in the composition of membrane lipids was the threefold lower share of sterols at 4°C. During growth under optimal conditions, the proportion of phosphatidic acids decreased against the background of a slight increase in the levels of sterols, phosphatidylethanolamines, and phosphatidylcholines, while at 4°C the proportion of phosphatidic acids decreased slightly and the proportion of phosphatidylcholines increased. The fatty acids composition of phospholipids during growth at 20°C did not change significantly; linoleic, oleic, linolenic, and palmitic acids were predominant. At 4°C, the proportion of palmitic acid decreased and that of oleic acid increased, while the proportion of γ-linolenic acid decreased by half while that of α-linoleic acid increased. However, these changes did not lead to a significant change in the unsaturation degree of phospholipids, which varied between 1.5 and 1.6. Trehalose and glucose were the predominant osmolytes of the cytosol; glycerol was present in minor amounts only at 4°C. At both temperatures, the amount of osmolytes reached 3% of the dry weight in the course of growth, and the proportion of trehalose reached 70%. At both temperatures, a constant composition of osmolytes and slight changes in the composition of membrane lipids and their degree of unsaturation were observed, which probably contributes to the high growth rate of the fungus over a wide temperature range.

Full Text

Restricted Access

About the authors

О. А. Danilova

Federal Research Center of Biotechnology, Russian Academy of Sciences

Author for correspondence.
Email: noitcelfer@mail.ru

Winogradsky Institute of Microbiology

Russian Federation, Moscow

Е. А. Ianutsevich

Federal Research Center of Biotechnology, Russian Academy of Sciences

Email: noitcelfer@mail.ru

Winogradsky Institute of Microbiology

Russian Federation, Moscow

G. А. Kochkina

Pushchino Scientific Center for Biological Research, Russian Academy of Sciences

Email: noitcelfer@mail.ru

Skryabin Institute of Biochemistry and Physiology of Microorganisms

Russian Federation, Pushchino

N. V. Groza

MIREA Russian Technological University

Email: noitcelfer@mail.ru
Russian Federation, Moscow

V. М. Tereshina

Federal Research Center of Biotechnology, Russian Academy of Sciences

Email: noitcelfer@mail.ru

Winogradsky Institute of Microbiology

Russian Federation, Moscow

References

  1. Илиенц И. Р. Сообщества микромицетов пещер как источник штаммов для сельскохозяйственной и экологической биотехнологии: автореф. дис. ... канд. биол. наук: 03.02.08. Красноярский гос. аграр. ун-т. Красноярск, 2009. 19 с.
  2. Кочкина Г. А., Иванушкина Н. Е., Акимов В. Н., Гиличинский Д. А., Озерская С. М. Галопсихротолерантные грибы рода Geomyces из криопэгов и морских отложений Арктики // Микробиология. 2007. Т. 76. С. 39–47.
  3. Kochkina G. A., Ivanushkina N. E., Akimov V. N., Gilichinskii D. A., Ozerskaya S. M. Halo-and psychrotolerant Geomyces fungi from arctic cryopegs and marine deposits // Microbiology (Moscow). 2007. V. 76. P. 31–38. https://doi.org/10.1134/S0026261707010055
  4. Кочкина Г. А., Озерская С. М., Иванушкина Н. Е., Чигинева Н. И., Василенко О. В., Спирина Е. В., Гиличинский Д. А. Разнообразие грибов деятельного слоя Антарктиды // Микробиология. 2014. Т. 83. С. 236–244. https://doi.org/10.7868/S002636561402013X
  5. Kochkina G. A., Ozerskaya S. M., Ivanushkina N. E., Chigineva N. I., Vasilenko O. V., Spirina E. V., Gilichinskii D. A. Fungal diversity in the Antarctic active layer // Microbiology (Moscow). 2014. V. 83. P. 94–101. https://doi.org/10.1134/S002626171402012X
  6. Хижняк С. В. Микробные сообщества карстовых пещер Средней Сибири: автореф. дисс. ...докт. биол. наук: 03.00.16. Красноярский гос. аграр. ун-т. Красноярск, 2009. 32 с.
  7. Януцевич Е. А., Данилова О. А., Грум-Гржимайло О. А., Гроза Н. В., Терешина В. М. Адаптация ацидофильного гриба Sistotrema brinkmannii к рH фактору // Микробиология. 2023. Т. 92. С. 279–288. https://doi.org/10.31857/S0026365622600870
  8. Ianutsevich E. A., Danilova O. A., Grum-Grzhimailo O.A., Groza N. V., Tereshina V. M. Adaptation of the acidophilic fungus Sistotrema brinkmannii to the pH factor // Microbiology (Moscow). 2023. V. 92. P. 370–378. https://doi.org/10.1134/S0026261723600210
  9. Argüelles J.-C., Guirao-Abad J.P., Sánchez-Fresneda R. Trehalose: a crucial molecule in the physiology of fungi // Reference Module in Life Sciences. Encyclopedia of Microbiology (Fourth Edition). Elsevier, 2017. P. 486–494.
  10. Bharudin I., Abu Bakar M. F., Hashim N. H.F., Mat Isa M. N., Alias H., Firdaus-Raih M., Md Illias R., Najimudin N., Mahadi N. M., Abu Bakar F. D., Abdul Murad A. M. Unravelling the adaptation strategies employed by Glaciozyma antarctica PI12 on Antarctic sea ice // Mar. Environ. Res. 2018. V. 137. P. 169–176. https://doi.org/10.1016/j.marenvres.2018.03.007
  11. Bondarenko S. A., Ianutsevich E. A., Danilova O. A., Grum-Grzhimaylo A.A., Kotlova E. R., Kamzolkina O. V., Bilanenko E. N., Tereshina V. M. Membrane lipids and soluble sugars dynamics of the alkaliphilic fungus Sodiomyces tronii in response to ambient pH // Extremophiles. 2017. V. 21. P. 743–754. https://doi.org/10.1007/s00792-017-0940-4
  12. Boumann H. A., Gubbens J., Koorengevel M. C., Oh C.-S., Martin C. E., Heck A. J.R., Patton-Vogt J., Henry S. A., de Kruijff B., de Kroon A. I.P.M. Depletion of phosphatidylcholine in yeast induces shortening and increased saturation of the lipid acyl chains: evidence for regulation of intrinsic membrane curvature in a Eukaryote // Mol. Biol. Cell. 2006. V. 17. P. 1006–1017. https://doi.org/10.1091/mbc.e05-04-0344
  13. Brink-Van Der Laan E. Van Den, Antoinette Killian J., de Kruijff B. Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile // Biochim. Biophys. Acta Biomembr. 2004. V. 1666. P. 275–288. https://doi.org/10.1016/j.bbamem.2004.06.010
  14. Brobst K. M. Gas-liquid chromatography of trimethylsilyl derivatives: analysis of corn syrup // General carbohydrate method / Eds. Whistler R. L., BeMiller J. N. New York‒London: Academic Press, 1972. P. 3–8.
  15. Casanueva A., Tuffin M., Cary C., Cowan D. A. Molecular adaptations to psychrophily: the impact of “omic” technologies // Trends Microbiol. 2010. V. 18. P. 374–381.
  16. Cassaro A., Pacelli C., Aureli L., Catanzaro I., Leo P., Onofri S. Antarctica as a reservoir of planetary analogue environments // Extremophiles. 2021. V. 25. P. 437–458. https://doi.org/10.1007/s00792-021-01245-w
  17. Cavicchioli R. Cold-adapted archaea // Nat. Rev. Microbiol. 2006. V. 4. P. 331–343. https://doi.org/10.1038/nrmicro1390
  18. Coker J. A. Recent advances in understanding extremophiles // F1000Research. 2019. V. 8. P. 1917. https://doi.org/10.12688/f1000research.20765.1
  19. Danilova O. A., Ianutsevich E. A., Bondarenko S. A., Antropova A. B., Tereshina V. M. Membrane lipids and osmolytes composition of xerohalophilic fungus Aspergillus penicillioides during growth on high NaCl and glycerol media // Microbiology (Moscow). 2022. V. 91. P. 503–513. https://doi.org/10.1134/S0026261722601373
  20. Dawaliby R., Trubbia C., Delporte C., Noyon C., Ruysschaert J. M., van Antwerpen P., Govaerts C. Phosphatidylethanolamine is a key regulator of membrane fluidity in eukaryotic cells // J. Biol. Chem. 2016. V. 291. P. 3658–3667. https://doi.org/10.1074/jbc.M115.706523
  21. Elbein A. D., Pan Y. T., Pastuszak I., Carroll D. New insights on trehalose: a multifunctional molecule. // Glycobiology. 2003. V. 13. P. 17R–27R. https://doi.org/10.1093/glycob/cwg047
  22. Feller G., Gerday C. Psychrophilic enzymes: hot topics in cold adaptation // Nat. Rev. Microbiol. 2003. V. 1. P. 200–208. https://doi.org/10.1038/nrmicro773
  23. Frolov V. A., Shnyrova A. V., Zimmerberg J. Lipid polymorphisms and membrane shape // Cold Spring Harb. Perspect. Biol. 2011. V. 3. Art. a004747. https://doi.org/10.1101/cshperspect.a004747
  24. Garton G. A., Goodwin T. W., Lijinsky W. Studies in carotenogenesis. 1. General conditions governing β-carotene synthesis by the fungus Phycomyces blakesleeanus Burgeff // Biochem. J. 1951. V. 48. P. 154–163. https://doi.org/10.1042/bj0480154
  25. Gostinčar C., Gunde-Cimerman N. Overview of oxidative stress response genes in selected halophilic fungi // Genes (Basel). 2018. V. 9. Art. 143. https://doi.org/10.3390/genes9030143
  26. Hayashi M., Maeda T. Activation of the HOG pathway upon cold stress in Saccharomyces cerevisiae // J. Biochem. 2006. V. 139. P. 797–803. https://doi.org/10.1093/jb/mvj089
  27. Hoshino T., Matsumoto N. Cryophilic fungi to denote fungi in the cryosphere // Fungal Biol. Rev. 2012. V. 26. P. 102–105. https://doi.org/10.1016/j.fbr.2012.08.003
  28. Ianutsevich E. A., Danilova O. A., Groza N. V., Kotlova E. R., Tereshina V. M. Heat shock response of thermophilic fungi: membrane lipids and soluble carbohydrates under elevated temperatures // Microbiology (Reading). 2016. V. 162. P. 989–999. https://doi.org/10.1099/mic.0.000279
  29. Ianutsevich E. A., Danilova O. A., Bondarenko S. A., Tereshina V. M. Membrane lipid and osmolyte readjustment in the alkaliphilic micromycete Sodiomyces tronii under cold, heat and osmotic shocks // Microbiology (SGM). 2021. V. 167. № 11. P. 1–8. https://doi.org/10.1099/mic.0.001112
  30. Ianutsevich E. A., Danilova O. A., Antropova A. B., Tereshina V. M. Acquired thermotolerance, membrane lipids and osmolytes profiles of xerohalophilic fungus Aspergillus penicillioides under heat shock. // Fungal Biol. 2023a. V. 127. P. 909–917. https://doi.org/10.1016/j.funbio.2023.01.002
  31. Ianutsevich E. A., Danilova O. A., Grum-Grzhimaylo O.A., Tereshina V. M. The role of osmolytes and membrane lipids in the adaptation of acidophilic fungi // Microorganisms. 2023b. V. 11. Art. 1733. https://doi.org/10.3390/microorganisms11071733
  32. Ibrar M., Ullah M. W., Manan S., Farooq U., Rafiq M., Hasan F. Fungi from the extremes of life: an untapped treasure for bioactive compounds // Appl. Microbiol. Biotechnol. 2020. V. 104. P. 2777–2801. https://doi.org/10.1007/s00253-020-10399-0
  33. Inouye M., Phadtare S. Cold-shock response and adaptation to near-freezing temperature in cold-adapted yeasts // Cold-adapted yeasts: biodiversity, adaptation strategies and biotechnological significance / Eds. P. Buzzini, R. Margesin. Springer, 2014. https://doi.org/10.1126/stke.2372004pe26
  34. Iturriaga G., Suárez R., Nova-Franco B. Trehalose metabolism: from osmoprotection to signaling // Int. J. Mol. Sci. 2009. V. 10. P. 3793–3810. https://doi.org/10.3390/ijms10093793
  35. Jennings D. H. Polyol metabolism in Fungi // Advances in microbial physiology / Eds. Rose A. H., D. W. Tempest: Academic Press, 1985. P. 149–193.
  36. Kahraman M., Sevim G., Bor M. The role of proline, glycinebetaine, and trehalose in stress-responsive gene expression // Osmoprotectant-mediated abiotic stress tolerance in plants / Eds. Hossain M. et al. Cham: Springer International Publishing, 2019. P. 241–256.
  37. Kooijman E. E., Chupin V., de Kruijff B., Burger K. N.J. Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid // Traffic. 2003. V. 4. P. 162–174. https://doi.org/10.1034/j.1600-0854.2003.00086.x
  38. Kosar F., Akram N. A., Sadiq M., Al-Qurainy F., Ashraf M. Trehalose: a key organic osmolyte effectively involved in plant abiotic stress tolerance // J. Plant Growth Regul. 2019. V. 38. P. 606–618. https://doi.org/10.1007/s00344-018-9876-x
  39. Marchetta A., Papale M., Rappazzo A. C., Rizzo C., Camacho A., Rochera C., Azzaro M., Urzì C., Lo Giudice A., De Leo F. A deep insight into the diversity of microfungal communities in Arctic and Antarctic lakes // J. Fungi. 2023. V. 9. Art. 1095. https://doi.org/10.3390/jof9111095
  40. McMahon H.T., Gallop J. L. Membrane curvature and mechanisms of dynamic cell membrane remodelling // Nature. 2005. V. 438. P. 590–596. https://doi.org/10.1038/nature04396
  41. Morita R. Y. Psychrophilic bacteria // Bacteriol. Rev. 1975. V. 39. P. 144–167. https://doi.org/10.1128/mmbr.39.2.144-167.1975
  42. Pudasaini S., Wilson J., Ji M., van Dorst J., Snape I., Palmer A. S., Burns B. P., Ferrari B. C. Microbial diversity of Browning Peninsula, Eastern Antarctica revealed using molecular and cultivation methods // Front. Microbiol. 2017. V. 8. https://doi.org/10.3389/fmicb.2017.00591
  43. Redón M., Borrull A., López M., Salvadó Z., Cordero R., Mas A., Guillamón J. M., Rozès N. Effect of low temperature upon vitality of Saccharomyces cerevisiae phospholipid mutants // Yeast. 2012. V. 29. P. 443–452. https://doi.org/10.1002/yea.2924
  44. Renne M. F., de Kroon A. I.P.M. The role of phospholipid molecular species in determining the physical properties of yeast membranes // FEBS Lett. 2018. V. 592. P. 1330–1345. https://doi.org/10.1002/1873-3468.12944
  45. Řezanka T., Kolouchová I., Sigler K. Lipidomic analysis of psychrophilic yeasts cultivated at different temperatures // Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2016. V. 1861. P. 1634–1642. https://doi.org/10.1016/j.bbalip.2016.07.005
  46. Sahara T., Goda T., Ohgiya S. Comprehensive expression analysis of time-dependent genetic responses in yeast cells to low temperature // J. Biol. Chem. 2002. V. 277. P. 50015–50021. https://doi.org/10.1074/jbc.M209258200
  47. Smith S. E., Read D. Mycorrhizal symbiosis. Academic Press, 2008. 3rd edn. 787 p.
  48. Su Y., Jiang X., Wu W., Wang M., Imran Hamid M., Xiang M., Liu X. Genomic, transcriptomic, and proteomic analysis provide insights into the cold adaptation mechanism of the obligate psychrophilic fungus Mrakia psychrophila // G3 Genes| Genomes| Genetics. 2016. V. 6. P. 3603–3613. https://doi.org/10.1534/g3.116.033308
  49. Tapia H., Koshland D. E. Trehalose is a versatile and long-lived chaperone for desiccation tolerance // Curr. Biol. 2014. V. 24. P. 2758–2766. https://doi.org/10.1016/j.cub.2014.10.005
  50. Tiwari S., Thakur R., Shankar J. Role of Heat-Shock Proteins in Cellular Function and in the Biology of Fungi // Biotechnol. Res. Int. 2015. V. 2015. P. 1–11. https://doi.org/10.1155/2015/132635
  51. Vigh L., Escribá P. V., Sonnleitner A., Sonnleitner M., Piotto S., Maresca B., Horváth I., Harwood J. L. The significance of lipid composition for membrane activity: new concepts and ways of assessing function // Prog. Lipid Res. 2005. V. 44. P. 303–344. https://doi.org/10.1016/j.plipres.2005.08.001
  52. Wang M., Jiang X., Wu W., Hao Y., Su Y., Cai L., Xiang M., Liu X. Psychrophilic fungi from the world’s roof // Persoonia. 2015. V. 34. P. 100–112. https://doi.org/10.3767/003158515X685878
  53. Wang M., Tian J., Xiang M., Liu X. Living strategy of cold-adapted fungi with the reference to several representative species // Mycology. 2017. V. 8. P. 178–188. https://doi.org/10.1080/21501203.2017.1370429
  54. Watson K., Arthur H., Shipton W. A. Leucosporidium yeasts: obligate psychrophiles which alter membrane-lipid and cytochrome composition with temperature. // J. Gen. Microbiol. 1976. V. 97. P. 11–18. https://doi.org/10.1099/00221287-97-1-11
  55. Wei X., Zhang M., Chi Z., Liu G.-L., Chi Z.-M. Genome-wide editing provides insights into role of unsaturated fatty acids in low temperature growth of the psychrotrophic yeast Metschnikowia bicuspidata var. australis W7-5 // Mar. Biotechnol. 2023. V. 25. P. 70–82. https://doi.org/10.1007/s10126-022-10182-4
  56. Weinstein R. N., Montiel P. O., Johnstone K. Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic // Mycologia. 2000. V. 92. P. 222‒229. https://doi.org/10.2307/3761554
  57. Yusof N. A., Hashim N. H.F., Bharudin I. Cold adaptation strategies and the potential of psychrophilic enzymes from the antarctic yeast, Glaciozyma antarctica pi12 // J. Fungi. 2021. V. 7. Art. 528. https://doi.org/10.3390/jof7070528

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Growth rate of M. flavus depending on temperature.

Download (58KB)
3. Fig. 2. Composition of carbohydrates and polyols in the cytosol during growth dynamics of M. flavus at 20°C (a) and 4°C (b). (a): 1 ‒ 1 day, 2 ‒ 2 days, 3 ‒ 3 days, 4 ‒ 4 days; (b): 1 ‒ 4 days, 2 ‒ 7 days, 3 ‒ 10 days, 4 ‒ 15 days; DB – dry biomass.

Download (183KB)
4. Fig. 3. The amount of membrane and storage lipids of the fungus at 20°C (a) and 4°C (b): 1 ‒ membrane lipids, 2 ‒ storage lipids.

Download (243KB)
5. Fig. 4. Composition of membrane lipids in the dynamics of M. flavus growth at 20°C. PE ‒ phosphatidylethanolamines, PC ‒ phosphatidylcholines, CL ‒ cardiolipins, PC ‒ phosphatidic acids, PS ‒ phosphatidylserines, PI ‒ phosphatidylinositols, LPE ‒ lysophosphatidylethanolamines, LPC ‒ lysophosphatidylcholines, SL ‒ sphingolipids. 1 ‒ 1 day, 2 ‒ 2 days, 3 ‒ 3 days, 4 ‒ 4 days.

Download (139KB)
6. Fig. 5. Composition of membrane lipids in the dynamics of M. flavus growth at 4°C. PE ‒ phosphatidylethanolamines, PC ‒ phosphatidylcholines, CL ‒ cardiolipins, PC ‒ phosphatidic acids, PS ‒ phosphatidylserines, PI ‒ phosphatidylinositols, LPE ‒ lysophosphatidylethanolamines, LPC ‒ lysophosphatidylcholines, SL ‒ sphingolipids. 1 ‒ 4 days, 2 ‒ 7 days, 3 ‒ 10 days, 4 ‒ 15 days.

Download (139KB)
7. Fig. 6. Fatty acid composition of membrane lipids (a) and their degree of unsaturation (b) in the growth dynamics of M. flavus at 20°C. 1 - 1 day, 2 - 2 days, 3 - 3 days, 4 - 4 days.

Download (207KB)
8. Fig. 7. Fatty acid composition of membrane lipids (a) and their degree of unsaturation (b) in the growth dynamics of M. flavus at 4°C. 1 ‒ 4 days, 2 ‒ 7 days, 3 ‒ 10 days, 4 ‒ 15 days.

Download (212KB)
9. Fig. 8. Composition of storage lipids in the dynamics of M. flavus growth at 20°C (a) and at 4°C (b). MAG ‒ monoacylglycerides, DAG ‒ diacylglycerides, TAG ‒ triacylglycerides, FFA ‒ free fatty acids, Y ‒ unidentified lipid. (a): 1 ‒ 1 day, 2 ‒ 2 days, 3 ‒ 3 days, 4 ‒ 4 days; (b): 1 ‒ 4 days, 2 ‒ 7 days, 3 ‒ 10 days, 4 ‒ 15 days.

Download (197KB)

Copyright (c) 2024 Russian Academy of Sciences