Inactivation of the gene responsible for the synthesis of gluconic acid in the genome of Pantoea brenneri

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Abstract. To study the contribution of the glucose dehydrogenase (gcd) gene product to the development of ISR priming in plants, a strain of Pantoea brenneri 3.2 with a deletion of the gcd gene was obtained. Using the Lambda Red (λ Red) phage recombination system, we obtained a marker-free mutant strain of P. brenneri 3.2 Δgcd. Inactivation of the gcd glucose dehydrogenase gene resulted in a 2.5-fold decrease in the strain’s ability to solubilize tricalcium phosphate on the solid nutrient medium NBRIP.

Full Text

Restricted Access

About the authors

A. D. Suleimanova

Kazan (Volga Region) Federal University

Author for correspondence.
Email: Aliya.kzn@gmail.com
Russian Federation, Kazan, 420008

L. V. Sokolnikova

Kazan (Volga Region) Federal University

Email: Aliya.kzn@gmail.com
Russian Federation, Kazan, 420008

D. S. Bulmakova

Kazan (Volga Region) Federal University

Email: Aliya.kzn@gmail.com
Russian Federation, Kazan, 420008

E. A. Egorova

Kazan (Volga Region) Federal University

Email: Aliya.kzn@gmail.com
Russian Federation, Kazan, 420008

M. R. Sharipova

Kazan (Volga Region) Federal University

Email: Aliya.kzn@gmail.com
Russian Federation, Kazan, 420008

References

  1. Бульмакова Д. С., Шагиева Г. И., Иткина Д. Л., Ленина О. А., Шарипова М. Р., Сулейманова А. Д. Антагонистические штаммы Pantoea brenneri как средства защиты растений // Микология и фитопатология. 2023. Т. 57. C. 352–361.
  2. Иткина Д. Л., Сулейманова А. Д., Шарипова М. Р. Pantoea brenneri AS3 и Bacillus ginsengihumi M2.11 как потенциальные агенты биоконтроля и стимуляторы роста растений // Микробиология. 2021. Т. 90. С. 204–214.
  3. Itkina D. L., Suleimanova A. D., Sharipova M. R. Pantoea brenneri AS3 and Bacillus ginsengihumi M2.11 as potential biocontrol and plant growth-promoting agents // Microbiology (Moscow). 2021. V. 90. P. 210–218.
  4. Datsenko K. A., Wanner K. A. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products // Proc. Natl. Acad. Sci. USA. 2000. V. 97. P. 6640–6645.
  5. Hanahan D. Studies on transformation of Escherichia coli with plasmids // J. Mol. Biol. 1983. V. 166. P. 557–580.
  6. Kumar A., Verma J. Does plant-microbe interaction confer stress tolerance in plants: a review // Microbiol. Res. 2018. V. 207. P. 41–52.
  7. Park J. H., Bolana N., Megharaj M., Naidua R. Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil // J. Hazard. Mater. 2011. V. 185. P. 829–836.
  8. Paul D., Sinha S. N. Isolation and characterization of phosphate solubilizing bacterium Pseudomonas aeruginosa KUPSB12 with antibacterial potential from river Ganga, India // Ann. Agrar. Sci. 2017. V. 15. P. 130–136.
  9. Rawat P., Das S., Shankhdhar D., Shankhdhar S. C. Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake // J. Soil Sci. Plant Nutr. 2020. V. 21. P. 49–68.
  10. Sambrook J., Fritsch E. F., Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. NY: Cold Spring Harbor Laboratory Press, 1989.
  11. Suleimanova A. D., Beinhauer A., Valeeva L. R., Chastukhina I. B., Balaban N. P., Shakirov E. V., Greiner R., Sharipova M. R. Novel glucose-1-phosphatase with high phytase activity and unusual metal ion activation from soil bacterium Pantoea sp. strain 3.5.1 // Appl. Environ. Microbiol. 2015. V. 81. P. 6790–6799.
  12. Suleimanova A., Bulmakova D., Sokolnikova L., Egorova E., Itkina D., Kuzminova O., Gizatullina A., Sharipova M. Phosphate solubilization and plant growth promotion by Pantoea brenneri soil isolates // Microorganisms. 2023. V. 11. Art. 1136. https://doi.org/10.3390/microorganisms11051136

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Electrophoresis of PCR products at the stages of obtaining the mutant strain P. brenneri 3.2 Δgcd

Download (110KB)
3. Fig. 2. a – Growth of the native strain P. brenneri 3.2 and its mutant for the gene involved in the synthesis of gluconic acid on LB medium. *P < 0.05, **P < 0.01, ***P < 0.001; b – ability of the native and mutant strains to solubilize tricalcium phosphate.

Download (94KB)

Copyright (c) 2025 Russian Academy of Sciences