Sample preparation and sequencing efficiency of microRNA libraries from pituitary adenoma tissue and blood plasma of patients with acromegaly for Illumina platform
- Authors: Ignatieva Е.V.1, Nerubenko E.S.1, Ivanova O.I.1, Tsoy U.А.1, Dmitrieva R.I.1
-
Affiliations:
- Almazov National Medical Research Centre
- Issue: Vol 59, No 2 (2025)
- Pages: 309-323
- Section: МЕТОДЫ
- URL: https://jdigitaldiagnostics.com/0026-8984/article/view/682885
- DOI: https://doi.org/10.31857/S0026898425020121
- EDN: https://elibrary.ru/GFUSPR
- ID: 682885
Cite item
Abstract
MicroRNAs in tissues and biological fluids represent a promising class of biomarkers for the molecular diagnostics and therapy of numerous diseases, including oncological diseases. Biomarkers based on easily accessible biological fluids, primarily blood-based biomarkers, are of particular value for diagnostic and prognostic purposes. To explore the potential of microRNAs as prognostic cancer markers and targets for molecular therapy, global microRNA profiling is required, which is provided by next-generation sequencing (NGS). NGS offers high sensitivity, single nucleotide resolution, and the possibility of profiling a large number of samples in parallel. Despite the promising potential of microRNAs as biomarkers and the growing number of works in this area, the literature does not sufficiently address in detail the problems associated with sample preparation methods, the specifics of library preparation for microRNA sequencing, and the difficulties of quantitative analysis. Protocols for creating libraries for microRNA sequencing present specific challenges and require selecting conditions for each type of biological sample. Here, we present in detail the preparation of libraries for microRNA sequencing from pituitary adenoma tumor tissue and blood plasma of patients with acromegaly on the Illumina platform. We discuss the difficulties and limitations of the methods and evaluate the effectiveness of sequencing plasma and brain samples. The work can serve as a guide for researchers studying the mechanisms of microRNA regulation in endocrine diseases of the pituitary gland and will also allow for the adaptation of technical procedures for various biological samples in relation to other pathologies.
Keywords
Full Text

About the authors
Е. V. Ignatieva
Almazov National Medical Research Centre
Author for correspondence.
Email: lefutr@mail.ru
Russian Federation, Saint-Petersburg
E. S. Nerubenko
Almazov National Medical Research Centre
Email: lefutr@mail.ru
Russian Federation, Saint-Petersburg
O. I. Ivanova
Almazov National Medical Research Centre
Email: lefutr@mail.ru
Russian Federation, Saint-Petersburg
U. А. Tsoy
Almazov National Medical Research Centre
Email: lefutr@mail.ru
Russian Federation, Saint-Petersburg
R. I. Dmitrieva
Almazov National Medical Research Centre
Email: lefutr@mail.ru
Russian Federation, Saint-Petersburg
References
- Iacomino G. (2023) miRNAs: the road from bench to bedside. Genes. 14, 314.
- O’Brien J., Hayder H., Zayed Y., Peng C. (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. 9, 402.
- Svoronos A.A., Engelman D.M., Slack F.J. (2016) OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer Res.76, 3666–3670.
- Chakrabortty A., Patton D.J., Smith B.F., Agarwal P. (2023) miRNAs: potential as biomarkers and therapeutic targets for cancer. Genes. 14, 1375.
- Lagos-Quintana M., Rauhut R., Yalcin A., Meyer J., Lendeckel W., Tuschl T. (2002) Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12, 735–739.
- Si W., Shen J., Zheng H., Fan W. (2019) The role and mechanisms of action of microRNAs in cancer drug resistance. Clin. Epigenetics. 11, 25.
- Dai S., Li F., Xu S., Hu J., Gao L. (2023) The important role of miR-1-3p in cancers. J. Transl. Med. 21, 769.
- Jurj A., Zanoaga O., Braicu C., Lazar V., Tomuleasa C., Irimie A., Berindan-Neagoe I.A Comprehensive picture of extracellular vesicles and their contents. Molecular transfer to cancer cells. (2020) Cancers. 12, 298.
- Li M., Zeringer E., Barta T., Schageman J., Cheng A., Vlassov A.V. (2014) Analysis of the RNA content of the exosomes derived from blood serum and urine and its potential as biomarkers. Philosoph. Transact. Royal Soc. B: Biol. Sci. 369, 1652.
- Potla P., Ali S.A., Kapoor M. (2020) A bioinformatics approach to microRNA-sequencing analysis. Osteoarthr. Cartil. Open. 3, 100131.
- Andrews S. (2010) FastQC – a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
- Martin M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10.
- Langmead B., Trapnell C., Pop M., Salzberg S.L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25.
- Kozomara A., Birgaoanu M., Griffiths-Jones S. (2019) miRBase: from microRNA sequences to function. Nucl. Acids Res. 47(D1), D155–D162.
- Liao Y., Smyth G.K., Shi W. (2014) FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 30, 923–930.
- Ewels P., Magnusson M., Lundin S., Käller M. (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 32, 3047.
- Brown R.A.M., Epis M.R., Horsham J.L., Kabir T.D., Richardson K.L., Leedman P.J. (2018) Total RNA extraction from tissues for microRNA and target gene expression analysis: not all kits are created equal. BMC Biotechnol. 18, 16.
- Aryani A., Denecke B. (2015) In vitro application of ribonucleases: comparison of the effects on mRNA and miRNA stability. BMC Res. Notes. 8, 164.
- Li Z., Chen D., Wang Q., Tian H., Tan M., Peng D., Tan Y., Zhu J., Liang W., Zhang L. (2021) mRNA and microRNA stability validation of blood samples under different environmental conditions. Forensic Sci. Int. Genet. 55, 102567.
- Kondratov K., Kurapeev D., Popov M., Sidorova M., Minasian S., Galagudza M., Kostareva A., Fedorov A. (2016) Heparinase treatment of heparin-contaminated plasma from coronary artery bypass grafting patients enables reliable quantification of microRNAs. Biomol. Detect. Quantif. 8, 9.
- Coenen-Stass A.M.L, Magen I., Brooks T., Ben-Dov I.Z., Greensmith L., Hornstein E., Fratta P. (2018) Evaluation of methodologies for microRNA biomarker detection by next generation sequencing. RNA Biol. 15, 1133.
- Yeri A., Courtright A., Danielson K., Hutchins E., Alsop E., Carlson E., Hsieh M., Ziegler O., Das A., Shah R.V., Rozowsky J., Das S., Van Keuren-Jensen K. (2018) Evaluation of commercially available small RNASeq library preparation kits using low input RNA. BMC Genomics. 19, 331.
- Androvic P., Benesova S., Rohlova E., Kubista M., Valihrach L. (2022) Small RNA-sequencing for analysis of circulating miRNAs: benchmark study. J. Mol. Diagnostics. 24, 386–394.
- Heinicke F., Zhong X., Zucknick M., Breidenbach J., Sundaram A.Y.M., T. Flåm S., Leithaug M., Dalland M., Farmer A., Henderson J.M., Hussong M.A., Moll P., Nguyen L., McNulty A., Shaffer J.M., Shore S., Yip H.K., Vitkovska J., Rayner S., Lie B.A., Gilfillan G.D. (2020) Systematic assessment of commercially available low-input miRNA library preparation kits. RNA Biol. 17, 75–86.
- Alotaibi F. (2023) Exosomal microRNAs in cancer: potential biomarkers and immunotherapeutic targets for immune checkpoint molecules. Front. Genet. 14, 1052731.
- Kalinina O.V., Khudiakov A.А., Panshin D.D., Nikitin Yu. V., Ivanov A.M., Kostareva A.A., Golovkin A.S. (2022) Small non-coding RNA profiles of sorted plasma extracellular vesicles: technical approach. J. Evol. Biochem. Physiol. 58, 1847–1864.
- Petrova T., Kalinina O., Aquino A., Grigoryev E., Dubashynskaya N.V., Zubkova K., Kostareva A., Golovkin A. (2024) Topographic distribution of miRNAs (miR-30a, miR-223, miR-let-7a, miR-let-7f, miR-451, and miR-486) in the plasma extracellular vesicles. Non-Coding RNA. 10(1), 15.
Supplementary files
