Molybdenum-Containing Catalysts Based on Porous Aromatic Frameworks as Catalysts of Oxidation of Sulfur-Containing Compounds
- Authors: Akopyan A.V1, Eseva E.A1, Lukashov M.O1, Kulikov L.A1
-
Affiliations:
- Department of Chemistry, Moscow State University
- Issue: Vol 63, No 1 (2023)
- Pages: 20-31
- Section: Articles
- URL: https://jdigitaldiagnostics.com/0028-2421/article/view/655633
- DOI: https://doi.org/10.31857/S0028242123010021
- EDN: https://elibrary.ru/TWRVSQ
- ID: 655633
Cite item
Abstract
New molybdenum-containing catalysts based on PAF-30 mesoporous carbon material for oxidation of sulfur-containing compounds (SCs) in a model fuel were synthesized. The PAF-30 support was modified with functional groups containing a positively charged nitrogen atom with various substituents. The modified supports were studied by the methods of low-temperature nitrogen adsorption/desorption, IR spectroscopy, and elemental analysis. The major factors affecting the oxidation were considered: reaction temperature and time, oxidant amount, catalyst dosage, and kind of sulfur-containing substrate. For the Мо/PAF-30-NEt3 catalyst, optimum conditions were found for oxidation of various classes of SCs in model mixtures: H2O2 : S molar ratio 6 : 1, 60°С, 60 min. The Мо/PAF-30-NEt3 catalyst operates in dibenzothiophene (DBT) oxidation during five cycles without appreciable activity loss.
About the authors
A. V Akopyan
Department of Chemistry, Moscow State University
Email: petrochem@ips.ac.ru
119991, Moscow, Russia
E. A Eseva
Department of Chemistry, Moscow State University
Email: esevakatya@mail.ru
119991, Moscow, Russia
M. O Lukashov
Department of Chemistry, Moscow State University
Email: petrochem@ips.ac.ru
119991, Moscow, Russia
L. A Kulikov
Department of Chemistry, Moscow State University
Author for correspondence.
Email: petrochem@ips.ac.ru
119991, Moscow, Russia
References
- Filippis P.D., Scarsella M. Oxidative desulfurization: oxidation reactivity of sulfur compounds in different organic matrixes // Energy & Fuels. 2003. V. 17. № 6. P. 1452-1455. https://doi.org/10.1021/ef0202539
- Рудякова Е.В. Система оценки качества топлива, масел и специальных жидкостей. Иркутск: Изд-во Иркутского гос. техн. университета, 2013. 56 с.
- Kilanowski D.R., Teeuwen H., Beer V.H.J., Gates B.C., Schuit G.C.A., Kwart H. Hydrodesulfurization of thiophene, benzothiophene, dibenzothiophene, and related compounds catalyzed by sulfided CoO-MoO3/γ-Al2О3: low-pressure reactivity studies // J. of Catalysis. 1978. V. 55. № 2. P. 129-137. https://doi.org/10.1016/0021-9517(78)90199-9
- Ghubayra R., Nuttall C., Hodgkiss S., Craven M., Kozhevnikova E.F., Kozhevnikov I.V. Oxidative desulfurization of model diesel fuel catalyzed by carbon-supported heteropoly acids // App. Catal. B: Environ. 2019. V. 253. P. 309-316. https://doi.org/10.1016/j.apcatb.2019.04.063
- Lin L., Hong L., Jianhua Q., Jinjuan X. Progress in the technology for desulfurization of crude oil // China Petr. Proces. Petrochem. Tech. 2010. V. 12. № 4. P. 1-6.
- Babich I.V., Moulijn J.A. Science and technology of novel processes for deep desulfurization of oil refinery streams: a review // Fuel. 2003. V. 82. № 6. P. 607-631. https://doi.org/10.1016/S0016-2361(02)00324-1
- Гриднева Е.С. Десульфурация нефтепродуктов под действием ультразвука. Автореф. дис. канд. техн. наук (05.17.08). Московский гос. ун-тет инженерной экологии (МГУИЭ). М., 2010. 28 с.
- Chica A., Corma A., Domine M.E. Catalytic oxidative desulfurization (ODS) of diesel fuel on a continuous fixed-bed reactor // J. of Catalysis. 2006. V. 242. № 2. P. 299-308. https://doi.org/10.1016/j.jcat.2006.06.013
- Otsuki S., Nonaka T., Takashima N., Qian W., Ishihara A., Imai T., Kabe T. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction // Energy & Fuels. 2000. V. 14. № 6. P. 1232-1239. https://doi.org/10.1021/ef000096i
- Mokhtar W.W., Kader A.A., Bakar A.W. Effect of transition metal oxides catalysts on oxidative desulfurization of model diesel // Fuel Proces. Tech. 2012. V. 101. P. 78-84. https://doi.org/10.1016/j.fuproc.2012.04.004
- Bösmann A., Datsevich L., Jess A., Lauter A., Schmitz C., Wasserscheid P. Deep desulfurization of diesel fuel by extraction with ionic liquids // Chem. Comm. 2001. № 23. P. 2494-2495. https://doi.org/10.1039/B108411A
- Sano Y., Sugahara K., Choi K., Korai Y., Mochida I. Two-step adsorption process for deep desulfurization of diesel oil // Fuel. 2005. V. 84. № 7-8. P. 903-910. https://doi.org/10.1016/j.fuel.2004.11.019
- Park J.G., Chang H.K., Yi K.B., Park J., Han S., Cho S., Kim J. Reactive adsorption of sulfur compounds in diesel on nickel supported on mesoporous silica // App. Catal. B: Environ. 2008. V. 81. № 3-4. P. 244-250. https://doi.org/10.1016/j.apcatb.2007.12.014
- Li F., Zhang Z., Feng J., Cai X., Xu P. Biodesulfurization of DBT in tetradecane and crude oil by a facultative thermophilic bacterium Mycobacterium goodii X7B // J. of Biotechnology. 2007. V. 127. № 2. P. 222-228. https://doi.org/10.1016/j.jbiotec.2006.07.002
- Kareem S.A., Aribike D.S., Nwachukwu S.C.U., Latinwo G.K. Microbial desulfurization of diesel by Desulfobacterium indolicum // J. Environ. Sci. Eng. 2012. V. 54. № 1. P. 98-103.
- Komintarachat C., Trakarnpruk. W. Oxidative desulfurization using polyoxometalates // Ind. Eng. Chem. Res. 2006. V. 45. № 6. P. 1853-1856. https://doi.org/10.1021/ie051199x
- Zhao P. P., Zhang M. J., Wu Y. J., Wang J. Heterogeneous selective oxidation of sulfides with H2O2 catalyzed by ionic liquid-based polyoxometalate salts // Ind. Eng. Chem. Res. 2012. V. 51. № 19. P. 6641-6647. https://doi.org/10.1021/ie202232j
- Ghorbani N., Moradi G. Oxidative desulfurization of model and real oil samples using Mo supported on hierarchical alumina-silica: process optimization by Box-Behnken experimental design // Chinese J. Chem. Eng. 2019. V. 27. № 11. P. 2759-2770. https://doi.org/10.1016/j.cjche.2019.01.037
- Рахманов Э.В., Тараканова А.В., Валиева Т., Акопян А.В., Анисимов А.В. Окислительное обессеривание дизельной фракции пероксидом водорода в присутствии катализаторов на основе переходных металлов // Нефтехимия. 2014. Т. 54. № 1. С. 49-51. https://doi.org/10.7868/S0028242114010110
- Rakhmanov E.V., Tarakanova A.V., Valieva T., Akopyan A.V., Litvinova V.V., Maksimov A.L., Anisimov A.V., Vakarin S.V., Semerikova O.L., Zaikov Yu.P. Oxidative desulfurization of diesel fraction with hydrogen peroxide in the presence of catalysts based on transition metals // Petrol. Chemistry. 2014. V. 54. № 1. P. 48-50. https://doi.org/10.1134/S0965544114010101.
- Акопян А.В., Домашкин А.А., Поликарпова П.Д., Тараканова А.В., Анисимов А.В., Караханов Э.А. Пероксидное окислительное обессеривание негидроочищенного вакуумного газойля // Химическая технология. 2017. Т. 18. № 12. С. 545-548. https://doi.org/10.1134/S0040579518050020
- Garcıa-Gutierrez J.L., Fuentes G.A., HernandezTeran M.E., Garcia P., Murrieta-Guevara F., Jimenez-Cruz F. Ultra-deep oxidative desulfurization of diesel fuel by the Mo/Al2O3-H2O2 system: the effect of system parameters on catalytic activity // App. Catal. A: Gen. 2008. V. 334. № 1-2. P. 366-373. https://doi.org/10.1016/j.apcata.2007.10.024
- Sundararaman R., Song C. Catalytic oxidative desulfurization of diesel fuels using air in a two-step approach // Ind. Eng. Chem. Res. 2014. V. 53. № 5. P. 1890-1899. https://doi.org/10.1021/ie403445f
- Sikarwar P., Kumar U.K.A., Gosu V., Subbaramaiah V. Catalytic oxidative desulfurization of DBT using green catalyst (Mo/MCM-41) derived from coal fly ash // J. Environ. Chem. Eng. 2018. V. 6. № 2. P. 1736-1744. https://doi.org/10.1016/j.jece.2018.02.021
- Akopyan A.V., Polikarpova P.D., Arzyaeva N.V., Anisimov A.V., Maslova O.V., Senko O.V., Efremenko E.N. Model fuel oxidation in the presence of molybdenum-containing catalysts based on SBA-15 with hydrophobic properties // ACS Omega. 2021. V. 6. № 41. P. 26932-26941. https://doi.org/10.1021/acsomega.1c03267
- Dadashi M., Mazloom G., Akbari A., Banisharif F. The performance of micro-meso-pore HY zeolite for supporting Mo toward oxidation of dibenzothiophene // Environ. Sci. Pol. Res. 2020. V. 27. № 24. P. 30600-30614. https://doi.org/10.1007/s11356-020-09266-2
- Taghizadeh M., Mehrvarz E., Taghipour A. Polyoxometalate as an effective catalyst for the oxidative desulfurization of liquid fuels: a critical review // Rev. Chem. Eng. 2020. V. 36. № 7. P. 831-858. https://doi.org/10.1515/revce-2018-0058
- Ben T., Ren H., Ma S., Cao D., Lan J., Jing X., Wang W., Xu J., Deng F., Simmons J.M., Qiu S., Zhu G. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area // Angew. Chem. Int. Ed. 2009. V. 48. № 50. P. 9457-9460. https://doi.org/10.1002/anie.200904637
- Merino E., Verde-Sesto E., Maya E.M., Corma A., Iglesias M., Sanchez F. Mono-functionalization of porous aromatic frameworks to use as compatible heterogeneous catalysts in one-pot cascade reactions // Appl. Catal. A: Gen. 2014. V. 469. P. 206-212. https://doi.org/10.1016/j.apcata.2013.09.052
- Maximov A., Zolotukhina A., Kulikov L., Kardasheva Y., Karakhanov E. Ruthenium catalysts based on mesoporous aromatic frameworks for the hydrogenation of arenes // Reac. Kinet. Mech. Cat. 2016. V. 117. P. 729-743. https://doi.org/10.1007/s11144-015-0956-7
- Plietzsch O., Schilling C.I., Tolev M., Nieger M., Richert C., Muller T., Brase S. Four-fold click reactions: Generation of tetrahedral methane- and adamantane-based building blocks for higher-order molecular assemblies // Org. Biomol. Chem. 2009. V. 7. P. 4734-4743. https://doi.org/10.1039/B912189G
- Bazhenova M.A., Kulikov L.A., Bolnykh Y.S., Maksimov A.L., Karakhanov E.A. Palladium catalysts based on porous aromatic frameworks for vanillin hydrogenation: tuning the activity and selectivity by introducing functional groups // Catal. Comm. 2022. V. 170. P. 106486. https://doi.org/10.1016/j.catcom.2022.106486
- Lu W., Sculley J.P., Yuan D., Krishna R., Wei Z., Zhou H. Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas // Angewandte Chemie. 2012. V. 51. № 30. P. 7480-7484. https://doi.org/10.1002/anie.201202176
- Chen K., Xie S., Iglesia E., Bell A.T. Structure and properties of zirconia-supported molybdenum oxide catalysts for oxidative dehydrogenation of propane // J. Catal. 2000. V. 189. № 2. P. 421-430. https://doi.org/10.1006/jcat.1999.2720
- Akopyan A., Polikarpova P., Vutolkina A., Cherednichenko K., Stytsenko V., Glotov A. Natural clay nanotube supported Mo and W catalysts for exhaustive oxidative desulfurization of model fuels // Pure Appl. Chem. 2021. V. 93. № 2. P. 231-241. https://doi.org/10.1515/pac-2020-0901
- Houda S., Lancelot C., Blanchard P., Poinel L., Lamonier C. Oxidative desulfurization of heavy oils with high sulfur content: a review // Catalysts. 2018. V. 8. № 9. P. 344-369. https://doi.org/10.3390/catal8090344
- Jiang W., Dong L., Liu W., Guo T., Li H.P., Zhang M., Zhu W.S., Li H.M. Designing multifunctional SO3H-based polyoxometalate catalysts for oxidative desulfurization in acid deep eutectic solvents // RSC Advances. 2017. V. 7. P. 55318-55325. https://doi.org/10.1039/c7ra10125b
- Zhu W.S.A., Li H.M., Gu Q.Q., Wu P.W., Zhu G.P., Yan Y.S., Chen G.Y. Kinetics and mechanism for oxidative desulfurization of fuels catalyzed by peroxo-molybdenum amino acid complexes in water-immiscible ionic liquids // J. of Molecular Catalysis A: Chemical. 2011. V. 336. P. 16-22. https://doi.org/10.1016/j.molcata.2010.12.003
Supplementary files
