Зависимоcть активности и процесса in situ формирования ненанесенных сульфидных никель-вольфрамовых катализаторов совместного превращения пиридина и нафталина от содержания серы

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Ненанесенные сульфидные никель-вольфрамовые катализаторы получены in situ из соответствующих маслорастворимых соединений-прекурсоров и элементной серы в реакционных смесях нафталин–пиридин различного состава при 380°C, 5.0 МПа Н2, 5 ч и содержании Ni и W, соответственно, 7.3×10–5 и 1.5×10–4 моль. Установлено, что состав продуктов гидрирования нафталина и гидродеазотирования пиридина зависит от состава реакционной смеси и количества элементной серы, вводимой для in situ формирования сульфидных катализаторов. При полной конверсии нафталина с ростом содержания пиридина в смеси (от 0.5 до 9 мас.%) доля декалинов в продуктах снижается от 97 до 71 мас.% при мольном соотношении в катализаторе S/W, равном 4, и от 97 до 51 мас.% при S/W, равном 10. С увеличением мольного соотношения нафталин/пиридин от 0.5 до 60 наблюдали снижение степени превращения пиридина от 100 до 91% (при S/W, равном 4 мольн.) и от 100 до 81% (при S/W, равном 10 мольн.). Показано, что увеличение содержания серы способствует формированию более дисперсных частиц сульфида вольфрама, характеризующихся высокой степенью промотирования атомами никеля[1].

 

[1] Дополнительные материалы доступны в электронном виде по DOI статьи: 10.31857/S0028242124050054

Full Text

Restricted Access

About the authors

Мария Игоревна Князева

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Author for correspondence.
Email: knyazeva@ips.ac.ru
ORCID iD: 0000-0001-9054-0905

к. х. н.

Russian Federation, 199991, Москва

Айгуль Фанисовна Зиниатуллина

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Email: knyazeva@ips.ac.ru
ORCID iD: 0000-0001-5902-0194
Russian Federation, 199991, Москва

Татьяна Сергеевна Кучинская

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Email: knyazeva@ips.ac.ru
ORCID iD: 0000-0002-2908-0353
Russian Federation, 199991, Москва

Антон Львович Максимов

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Email: knyazeva@ips.ac.ru
ORCID iD: 0000-0001-9297-4950

д. х. н., чл.- корр. РАН

Russian Federation, 199991, Москва

References

  1. Song C., Saini A.K., Schobert H.H. Retrogressive reactions in catalytic coal liquefaction using dispersed MoS2 // Coal Science and Technology. 1995. V. 24. P. 1215–1218. https://doi.org/10.1016/S0167-9449(06)80020-0
  2. Angeles M.J., Leyva C., Ancheyta J., Ramírez S. A review of experimental procedures for heavy oil hydrocracking with dispersed catalyst // Catalysis Today. 2014. V. 220–222. P. 274–294. https://doi.org/10.1016/j.cattod.2013.08.016
  3. Eijsbouts S., Mayo S.W., Fujita K. Unsupported transition metal sulfide catalysts: From fundamentals to industrial application // Applied Catalysis A: General. 2007. V. 322. P. 58–66. https://doi.org/10.1016/j.apcata.2007.01.008
  4. Chianelli R.R., Berhault G., Torres B. Unsupported transition metal sulfide catalysts: 100 years of science and application // Catalysis Today. 2009. V. 147. I. 3–4. P. 275–286. https://doi.org/10.1016/j.cattod.2008.09.041
  5. Nguyen M.T., Nguyen N.T., Cho J., Park C., Park S., Jung J., Lee C. W. A review on the oil-soluble dispersed catalyst for slurry-phase hydrocracking of heavy oil // J. of Ind. and Eng. Chemistry. 2016. V. 43. P. 1–12. https://doi.org/10.1016/j.jiec.2016.07.057
  6. Prajapati R., Kohli K., Maity S. K. Slurry phase hydrocracking of heavy oil and residue to produce lighter fuels: An experimental review // Fuel. 2021. V. 288. ID. 119686. https://doi.org/10.1016/j.fuel.2020.119686
  7. Vogelgsang F., Ji Y., Shi H., Lercher J.A. On the multifaceted roles of NiSx in hydrodearomatization reactions catalyzed by unsupported Ni-promoted MoS2 // J. of Catalysis. 2020. V. 391. P. 212–223. https://doi.org/10.1016/j.jcat.2020.08.026
  8. Olivas A., Galvan D.H., Alonso G., Fuentes S. Trimetallic NiMoW unsupported catalysts for HDS // Applied Catalysis A: General. 2009. V. 352. I. 1–2. P. 10–16. https://doi.org/10.1016/j.apcata.2008.09.022
  9. Yi Y., Zhang B., Jin X., Wang L., Williams C. T., Xiong G., Su D., Liang C. Unsupported NiMoW sulfide catalysts for hydrodesulfurization of dibenzothiophene by thermal decomposition of thiosalts // J. of Molecular Catalysis A: Chemical. 2011. V. 351. P. 120–127. https://doi.org/10.1016/j.molcata.2011.09.024
  10. Li P., Chen Y., Zhang C., Huang B., Liu X., Liu T., Jiang Z., Li C. Highly selective hydrodesulfurization of gasoline on unsupported Co-Mo sulfide catalysts: Effect of MoS2 morphology // Applied Catalysis A: General. 2017. V. 533. P. 99–108. https://doi.org/10.1016/j.apcata.2017.01.009
  11. Yue L., Li G., Zhang F., Chen L., Li X., Huang X. Size-dependent activity of unsupported Co–Mo sulfide catalysts for the hydrodesulfurization of dibenzothiophene // Applied Catalysis A: General. 2016. V. 512. P. 85–92. https://doi.org/10.1016/j.apcata.2015.12.016
  12. Yoosuk B., Tumnantong D., Prasassarakich P. Amorphous unsupported Ni–Mo sulfide prepared by one step hydrothermal method for phenol hydrodeoxygenation // Fuel. 2012. V. 91. I. 1. P. 246–252. https://doi.org/10.1016/j.fuel.2011.08.001
  13. Wang C., Wu Z., Tang C., Li L., Wang D. The effect of nickel content on the hydrodeoxygenation of 4-methylphenol over unsupported NiMoW sulfide catalysts // Catalysis Communications. 2013. V. 32. P. 76–80. https://doi.org/10.1016/j.catcom.2012.11.031
  14. Yoosuk B., Sanggam P., Wiengket S., Prasassarakich P. Hydrodeoxygenation of oleic acid and palmitic acid to hydrocarbon-like biofuel over unsupported Ni–Mo and Co–Mo sulfide catalysts // Renewable Energy. 2019. V. 139. P. 1391–1399. https://doi.org/10.1016/j.renene.2019.03.030
  15. Burimsitthigul T., Yoosuk B., Ngamcharussrivichai C., Prasassarakich P. Hydrocarbon biofuel from hydrotreating of palm oil over unsupported Ni–Mo sulfide catalysts // Renewable Energy. 2021. V. 163. P. 1648–1659. https://doi.org/10.1016/j.renene.2020.10.044
  16. Джабаров Э.Г., Петрухина Н.Н. Гидродехлорирование 1.4-дихлорбензола на ненанесенных сульфидных катализаторах // Наногетерогенный катализ. 2022. Т. 7. № 2. С. 58–67. https://doi.org/10.56304/S2414215822020034 [Dzhabarov E.G., Petrukhina N.N. Hydrodechlorination of 1,4-dichlorobenzene over unsupported sulfide catalysts // Petrol. Chemistry. 2023. V. 62. P. 1334–1342. https://doi.org/10.1134/S0965544122110032 ]
  17. Dzhabarov E.G., Petrukhina N.N., Zakharyan E.M.Hydrodechlorination of a two-component mixture of chloroaromatic compounds in the presence of an unsupported sulfide catalyst // Mendeleev Communications. 2023. V. 33. I. 6. P. 839–840. https://doi.org/10.1016/j.mencom.2023.10.033
  18. Вутолкина А.В., Махмутов Д.Ф., Занина А.В., Максимов А.Л., Глотов А.П., Синикова Н.А., Караханов Э.А. Гидрирование ароматических субстратов на дисперсных Ni–Mo сульфидных катализаторах в системе H2O/CO // Наногетерогенный катализ. 2018. Т. 3. № 1. С. 12–18. https://doi.org/10.1134/S2414215818010094 [Vutolkina A.V., Makhmutov D.F., Zanina A.V., Maximov A.L., Glotov A.P., Sinikova N.A., Karakhanov E.A. Hydrogenation of aromatic substrates over dispersed Ni–Mo sulfide catalysts in system H2O/CO // Petrol. Chemistry. 2018. V. 58. P. 528–534. https://doi.org/10.1134/S0965544118070095 ]
  19. Вутолкина А.В., Махмутов Д.Ф., Занина А.В., Максимов А.Л., Копицын Д.С., Глотов А.П., Егазарьянц С.В., Караханов Э.А. Гидропревращение производных тиофена на дисперсных Ni–Mo сульфидных катализаторах // Наногетерогенный катализ. 2018. Т. 3. № 2. С. 130–135. https://doi.org/10.1134/S2414215818020144 [Vutolkina A.V., Makhmutov D.F., Zanina A.V., Maximov A.L., Kopitsin D.S., Glotov A.P., Egazar’yants S.V., Karakhanov E.A. Hydroconversion of thiophene derivatives over dispersed Ni-Mo sulfide catalysts // Petrol. Chemistry. 2018. V. 58. P. 1227–1232. https://doi.org/10.1134/S0965544118140141 ]
  20. Вутолкина А.В., Глотов А.П., Максимов А.Л., Караханов Э.А. Гидропревращение 2-метилнафталина и дибенотиофена на сульфидных катализаторах под давлением монооксида углерода в присутствии воды // Известия Академии наук. Серия химическая. 2020. № 2. С. 280–288. EDN: OUMDLK [Vutolkina A.V., Glotov A.P., Maximov A.L., Karakhanov E.A. Hydroconversion of 2-methylnaphtalene and dibenzothiophene over sulfide catalysts in the presence of water under CO pressure // Russian Chemical Bulletin. 2020. V. 69. P. 280–288. https://doi.org/10.1007/s11172-020-2757-z ]
  21. Vutolkina A., Glotov A., Baygildin I., Akopyan A., Talanova M., Terenina M., Maximov A., Karakhanov E. Ni–Mo sulfide nanosized catalysts from water-soluble precursors for hydrogenation of aromatics under water gas shift conditions // Pure and Applied Chemistry. 2020. V. 92. № 6. P. 949–966. https://doi.org/10.1515/pac-2019-1115
  22. Maximov A.L., Sizova I.A., Khadzhiev S.N. Catalysis in a dispersion medium for the hydrogenation of aromatics and hydrodearomatization in oil refining // Pure and Applied Chemistry. 2017. V. 89. № 8. P. 1145–1155. https://doi.org/10.1515/pac-2016-1202
  23. Prado G. H.C., Rao Y., de Klerk A. Nitrogen removal from oil: a review // Energy Fuels. 2017. V. 31. I. 1. P. 14–36. https://doi.org/10.1021/acs.energyfuels.6b02779
  24. Han D.Y., Li G.X., Cao Z.B., Zhai X.Y., Yuan M.M. A study on the denitrogenation of Fushun shale oil // Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2013. V. 35. P. 622–628. https://doi.org/10.1080/15567036.2010.509085
  25. Badari C.A., Lónyi F., Dóbé S., Hancsók J., Valyon J. Catalytic hydrodenitrogenation of propionitrile over supported nickel phosphide catalysts as a model reaction for the transformation of pyrolysis oil obtained from animal by-products // Reaction Kinetics, Mechanisms and Catalysis. 2015. V. 115. P. 217–230. https://doi.org/10.1007/s11144-015-0842-3
  26. Leng L., Zhang W., Peng H., Li H., Jiang S., Huang H. Nitrogen in bio-oil produced from hydrothermal liquefaction of biomass: A review // Chem. Eng. J. 2020. V. 401. ID126030. https://doi.org/10.1016/j.cej.2020.126030
  27. Nadeina K.A., Budukva S.V., Vatutina Y.V., Mukhacheva P.P., Gerasimov E.Y., Pakharukova V.P., Klimov O.V., Noskov A.S. Unsupported Ni–Mo–W hydrotreating catalyst: influence of the atomic ratio of active metals on the HDS and HDN activity // Catalysts. 2022. V. 12. ID1671. https://doi.org/10.3390/catal12121671
  28. Perot G. The reactions involved in hydrodenitrogenation // Catalysis Today. 1991. V. 10. I. 4. P. 447–472. https://doi.org/10.1016/0920-5861(91)80033-6
  29. Changlong Yin, Haonan Zhang, Tongtong Wu, Zhuyan Wu, Kunpeng Li, Yan Kong, Chengwu Dong, Chenguang Li. Effect of naphthalene quinoline and H2S on DBT hydrodesulfurization over unsupported NiMoW catalyst // Korean J. of Chem. Eng. 2019. V. 36. P. 1983–1990. https://doi.org/10.1007/s11814-019-0409-5
  30. Kasztelan S., Toulhoat H., Grimblot J., Bonnelle J.P. A geometrical model of the active phase of hydrotreating catalysts // Applied Catalysis. 1984. V. 13. I. 1. V. 127–159. https://doi.org/10.1016/S0166-9834(00)83333-3
  31. Сизова И.А., Куликов А.Б., Онищенко М.И., Сердюков С. И., Максимов А. Л. Синтез сульфидного никель-вольфрамового катализатора гидродеароматизации разложением маслорастворимых прекурсоров // Нефтехимия. 2016. Т. 56. № 1. С. 52–58. https://doi.org/10.7868/S0028242115060179 [Sizova I.A., Kulikov A.B., Onishchenko M.I., Serdyukov S.I., Maksimov A.L. Synthesis of nickel-tungsten sulfide hydrodearomatization catalysts by the decomposition of oil-soluble precursors // Petrol. Chemistry. 2016. V. 56. P. 44–50. https://doi.org/10.1134/S0965544115080174 ]
  32. Kuchinskaya T.S., Knyazeva M.I., Maximov A.L. Specific features of the in situ formation of an unsupported NiWS nanosize catalyst from oil-soluble precursors // Catalysis Letters. 2023. V. 153. P. 198–203. https://doi.org/10.1007/s10562-022-03966-9
  33. Schwartz V., Oyama S.T. Reaction network of pyridine hydrodenitrogenation over carbide and sulfide catalysts // J. of Molecular Catalysis A: Chemical. 2000. V. 163. I. 1–2. P. 269–282. https://doi.org/10.1016/S1381-1169(00)00391-5
  34. Prins R., Jian M., Flechsenhar M. Mechanism and kinetics of hydrodenitrogenation // Polyhedron. 1997. V. 16. I. 18. P. 3235–3246. https://doi.org/10.1016/S0277-5387(97)00111-3
  35. Furimsky E., Massoth F.E. Hydrodenitrogenation of petroleum // Catalysis Reviews: Science and Engineering. 2005. V. 47. I. 3. P. 297–489. https://doi.org/10.1081/CR-200057492
  36. Raghuveer C.S., Thybaut J.W., De Bruycker R., Metaxas K., Bera T., Marin G.B. Pyridine hydrodenitrogenation over industrial NiMo/γ-Al2O3 catalyst: Application of gas phase kinetic models to liquid phase reactions // Fuel. 2014. V. 125. P. 206–218. https://doi.org/10.1016/j.fuel.2014.02.017
  37. Le Z., Afanasiev P., Li D., Long X., Vrinat M. Solution synthesis of the unsupported Ni–W sulfide hydrotreating catalysts // Catalysis Today. 2008. V. 130. I. 1. P. 24–31. https://doi.org/10.1016/j.cattod.2007.07.002
  38. Jin X., Ma C., Yi Y., Zhang Q., Qiu J., Liang C. Controlled preparation of unsupported binary and ternary sulfides with high surface area from tetraalkylammonium thiosalts // J. of Physics and Chemistry of Solids. 2010. V. 71. I. 4. P. 642–646. https://doi.org/10.1016/j.jpcs.2009.12.057
  39. An G., Liu C., Xiong C., Lu C. A study on the morphology of unsupported Ni–Mo–W sulfide hydrotreating catalysts through high-resolution transmission electron microscopy // Petrol. Science and Technology. 2012. V. 30 (15). P. 1599–1608. https://doi.org/10.1080/10916466.2010.509065
  40. Ding X., Liu D., Zhao P., Chen X., Wang H., Oropeza F.E., Gorni G., Barawi M., García-Tecedor M., de la Peña O’Shea V.A., Hofmann J. P., Li J., Kim J., Cho S., Wu R., Zhang K. H.L. Dynamic restructuring of nickel sulfides for electrocatalytic hydrogen evolution reaction // Nature Communications. 2024. V. 15. ID5336. https://doi.org/10.1038/s41467-024-49015-4
  41. Xia Q., Si L., Liu K., Zhou A., Su C., Shinde N. M., Fan G., Dou J. In situ preparation of three-dimensional porous nickel sulfide as a battery-type supercapacitor // Molecules. 2023. V. 28. ID4307. https://doi.org/10.3390/molecules28114307
  42. Vradman L., Landau M.V. Structure-function relations in supported Ni–W sulfide hydrogenation catalysts // Catalysis Letters. 2001. V. 77. P. 47–54. https://doi.org/10.1023/A:1012743213339
  43. Nogueira A., Znaiguia R., Uzio D., Afanasiev P., Berhault G. Curved nanostructures of unsupported and Al2O3-supported MoS2 catalysts: Synthesis and HDS catalytic properties // Applied Catalysis A: General. 2012. V. 429–430. P. 92–105. https://doi.org/10.1016/j.apcata.2012.04.013
  44. Iwata Y., Araki Y., Honna K., Miki Y., Sato K., Shimada H. Hydrogenation active sites of unsupported molybdenum sulfide catalysts for hydroprocessing heavy oils // Catalysis Today. 2001. V. 65. I. 2–4. P. 335–341. https://doi.org/10.1016/S0920-5861(00)00554-X
  45. Tayeb K.B., Lamonier C., Lancelot C., Fournier M., Bonduelle-Skrzypczak A., Bertoncini F. Active phase genesis of NiW hydrocracking catalysts based on nickel salt heteropolytungstate: Comparison with reference catalyst // Applied Catalysis B: Environmental. 2012. V. 126. P. 55–63. https://doi.org/10.1016/j.apcatb.2012.06.025
  46. Serdyukov S.I., Kniazeva M.I., Sizova I.A., Zubavichus Y.V., Dorovatovskii P.V., Maximov A.L. A new precursor for synthesis of nickel-tungsten sulfide aromatic hydrogenation catalyst // Molecular Catalysis. 2021. V. 502. ID11135747. https://doi.org/10.1016/j.mcat.2020.111357
  47. Shimada H., Matsubayashi N., Sato T., Yoshimura Y., Imamura M., Kameoka T., Yanase H., Nishijima A. Deterioration of the “Ni–W–S” phase of hydroprocessing catalysts during reaction // Japanese J. of Applied Physics. 1993. V. 32 (2). P. 463–465. https://doi.org/10.7567/JJAPS.32S2.463

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Supplementary materials
Download (414KB)
3. Fig. 1. Dependence of the composition of naphthalene hydrogenation products on the pyridine content in the reaction mixture at S/W ratios of (a) 4/1 mol. and (b) 10/1 mol. (380°C, 5.0 MPa H2, 5 h, 7.3×10-5 mol Ni, 1.5×10-4 mol W).

Download (160KB)
4. Fig. 2. Dependence of the composition of pyridine conversion products on the molar ratio of naphthalene/pyridine in the reaction mixture at S/W ratio: (a) 4/1 mol; (b) 10/1 mol. (380°C, 5.0 MPa H2, 5 h, 7.3×10-5 mol Ni, 1.5×10-4 mol W).

Download (160KB)
5. Fig. 3. Diffractograms of catalyst samples formed in situ (380°C, 5.0 MPa H2, 5 h, 7.3×10-5 mol Ni, 1.5×10-4 mol W, naphthalene/pyridine = 3/1 mol%): 1 - NiW_4; 2 - NiW_10.

Download (117KB)
6. Fig. 4. Microphotographs of catalyst samples formed in situ (380°C, 5.0 MPa H2, 5 h, 7.3×10-5 mol Ni, 1.5×10-4 mol W, naphthalene/pyridine = 3/1 mol): a, b, c - NiW_4; d, e, f - NiW_10.

Download (1MB)
7. Fig. 5. Deconvolution of the spectra of (a)W4f, (b) Ni2p and (c) S2p levels of NiW_10 catalyst.

Download (212KB)

Copyright (c) 2024 Russian Academy of Sciences