Конденсация циклогексанона с 2-метилфураном в присутствии модифицированных сульфогруппами пористых ароматических каркасов

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Модифицированные сульфогруппами пористые ароматические каркасы исследованы в качестве катализаторов конденсации циклогексанона с 2-метилфураном. Количественный выход целевого продукта — 1,1-бис(5-метил-2-фурил)циклогексана — достигается при температуре 60°С, соотношении 2-метилфуран: циклогексанол = 2 за 4 ч. Катализатор может быть использован многократно без дополнительной регенерации.

Full Text

Restricted Access

About the authors

Шан Лян

Московский государственный университет имени М. В. Ломоносова

Email: mailforleonid@mail.ru
ORCID iD: 0009-0004-2410-1727

химический факультет

Russian Federation, 119991, Москва

Леонид Андреевич Куликов

Московский государственный университет имени М. В. Ломоносова

Author for correspondence.
Email: mailforleonid@mail.ru
ORCID iD: 0000-0002-7665-5404

химический факультет

Russian Federation, 119991, Москва

Юлия Сергеевна Кардашева

Московский государственный университет имени М. В. Ломоносова

Email: mailforleonid@mail.ru
ORCID iD: 0000-0002-6580-1082

химический факультет

Russian Federation, 119991, Москва

Мария Владимировна Теренина

Московский государственный университет имени М. В. Ломоносова

Email: mailforleonid@mail.ru
ORCID iD: 0000-0002-4336-9786

химический факультет

Russian Federation, 119991, Москва

Наталья Александровна Синикова

Московский государственный университет имени М. В. Ломоносова

Email: mailforleonid@mail.ru
ORCID iD: 0000-0001-7196-0082

химический факультет

Russian Federation, 119991, Москва

Эдуард Аветисович Караханов

Московский государственный университет имени М. В. Ломоносова

Email: mailforleonid@mail.ru
ORCID iD: 0000-0003-4727-954X

химический факультет

Russian Federation, 119991, Москва

References

  1. Corma A., Iborra S., Velty A. Chemical Routes for the Transformation of Biomass into Chemicals // Chem. Rev. 2007. V. 107. № 6. P. 2411–2502. https://doi.org/10.1021/cr050989d
  2. Wu L., Moteki T., Gokhale Amit A., Flaherty David W., Toste F. D. Production of fuels and chemicals from biomass: condensation reactions and beyond // Chem. 2016. V. 1. № 1. P. 32–58. https://doi.org/10.1016/j.chempr.2016.05.002
  3. Kikhtyanin O., Čapek L., Smoláková L., Tišler Z., Kadlec D., Lhotka M., Diblíková P., Kubička D. Influence of Mg–Al mixed oxide compositions on their properties and performance in aldol condensation // Ind. Eng. Chem. Res. 2017. V. 56. № 45. P. 13411–13422. https://doi.org/10.1021/acs.iecr.7b03367
  4. Yang J., Li N., Li G., Wang W., Wang A., Wang X., Cong Y., Zhang T. Solvent-Free synthesis of C10 and C11 branched alkanes from furfural and methyl isobutyl ketone // ChemSusChem. 2013. V. 6. № 7. P. 1149–1152. https://doi.org/10.1002/cssc.201300318
  5. Smoláková L., Frolich K., Kocík J., Kikhtyanin O., Čapek L. Surface properties of hydrotalcite-based Zn(Mg)Al oxides and their catalytic activity in aldol condensation of furfural with acetone // Ind. Eng. Chem. Res. 2017. V. 56. № 16. P. 4638–4648. https://doi.org/10.1021/acs.iecr.6b04927
  6. Kikhtyanin O., Kadlec D., Velvarská R., Kubička D. Using Mg–Al Mixed Oxide and Reconstructed Hydrotalcite as Basic Catalysts for Aldol Condensation of Furfural and Cyclohexanone // ChemCatChem. 2018. V. 10. № 6. P. 1464–1475. https://doi.org/10.1002/cctc.201701880
  7. Arumugam M., Kikhtyanin O., Osatiashtiani A., Kyselová V., Fila V., Paterova I., Wong K.-L., Kubička D. Potassium-modified bifunctional MgAl-SBA-15 for aldol condensation of furfural and acetone // Sustain. Energy Fuels. 2023. V. 7. № 13. P. 3047–3059. https://doi.org/10.1039/D3SE00444A
  8. Kikhtyanin O., Kelbichová V., Vitvarová D., Kubů M., Kubička D. Aldol condensation of furfural and acetone on zeolites // Catal. Today. 2014. V. 227. № P. 154–162. https://doi.org/ 10.1016/j.cattod.2013.10.059
  9. Su M., Li W., Zhang T., Xin H., Li S., Fan W., Ma L. Production of liquid fuel intermediates from furfural via aldol condensation over Lewis acid zeolite catalysts // Catal. Sci. Technol. 2017. V. 7. № 16. P. 3555–3561. https://doi.org/10.1039/C7CY01028A
  10. Cueto J., Korobka V., Faba L., Díaz E., Ordóñez S. Aldol condensation of biomass-derived levulinic acid and furfural over acid zeolites // ACS Sustain. Chem. Eng. 2020. V. 8. № 11. P. 4371–4383. https://doi.org/10.1021/acssuschemeng.9b06636
  11. Gandhi P., Saha B., Vedachalam S., Dalai A. K. Renewable fuel intermediates from furfural over copper-loaded mesoporous aldol condensation catalysts // Sustain. Energy Fuels. 2023. V. 7. № 17. P. 4260–4272. https://doi.org/10.1039/D3SE00504F
  12. Balaga R., Yan P., Ramineni K., Du H., Xia Z., Marri M. R., Zhang Z. C. The role and performance of isolated zirconia sites on mesoporous silica for aldol condensation of furfural with acetone // Appl. Catal., A. 2022. V. 648. № P. 118901. https://doi.org/10.1016/j.apcata.2022.118901
  13. Morales G., Paniagua M., de la Flor D., Sanz M., Leo P., López-Aguado C., Hernando H., Orr S. A., Wilson K., Lee A.F., Melero J.A. Aldol condensation of furfural and methyl isobutyl ketone over Zr-MOF-808/silica hybrid catalysts // Fuel. 2023. V. 339. № ID127465. https://doi.org/10.1016/j.fuel.2023.127465
  14. Martín A., Arribas-Yuste E., Paniagua M., Morales G., Melero J.A. Efficient self-condensation of cyclohexanone into biojet fuel precursors over sulfonic acid-modified silicas: insights on the effect of pore size and structure // ACS Sustain. Chem. Eng. 2024. V. 12. № 27. P. 10175–10185. https://doi.org/10.1021/acssuschemeng.4c01956
  15. Wang W., Ji X., Ge H., Li Z., Tian G., Shao X., Zhang Q. Synthesis of C15 and C10 fuel precursors with cyclopentanone and furfural derived from hemicellulose // RSC Adv. 2017. V. 7. № 27. P. 16901–16907. https://doi.org/10.1039/C7RA02396K
  16. Deng Q., Han P., Xu J., Zou J.-J., Wang L., Zhang X.Highly controllable and selective hydroxyalkylation/alkylation of 2-methylfuran with cyclohexanone for synthesis of high-density biofuel // Chem. Eng. Sci. 2015. V. 138. № P. 239–243. https://doi.org/10.1016/j.ces.2015.08.025
  17. Zhong Y., Zhang P., Zhu X., Li H., Deng Q., Wang J., Zeng Z., Zou J.-J., Deng S. Highly efficient alkylation using hydrophobic sulfonic acid-functionalized biochar as a catalyst for Synthesis of High-Density Biofuels // ACS Sustain. Chem. Eng. 2019. V. 7. № 17. P. 14973–14981. https://doi.org/10.1021/acssuschemeng.9b03190
  18. Kulikov L.A., Bazhenova M.A., Bolnykh I.S., Maximov A.L., Karakhanov E.A. Hydroconversion of guaiacol family molecules over platinum catalysts based on porous aromatic frameworks // Catal. Lett. 2024. V. 154. № 11. P. 6106–6122. https://doi.org/10.1007/s10562-024-04793-w
  19. Goesten M. G., Juan-Alcañiz J., Ramos-Fernandez E.V., Sai Sankar Gupta K.B., Stavitski E., van Bekkum H., Gascon J., Kapteijn F. Sulfation of metal–organic frameworks: Opportunities for acid catalysis and proton conductivity // J. Catal. 2011. V. 281. № 1. P. 177–187. https://doi.org/10.1016/j.jcat.2011.04.015
  20. Ярчак В.А., Куликов Л.А., Максимов А.Л., Караханов Э. А. Эпоксидирование олефинов в присутствии молибденовых катализаторов на основе пористых ароматических каркасов // Нефтехимия. 2023. V. 63. № 1. P. 100–109. https://doi.org/10.31857/s0028242123010094 [Makhova V.A., Kulikov L.A., Akopyan A.V., Karakhanov E.A., Molybdenum catalysts supported on porous aromatic frameworks in epoxidation of olefins // Petrol. Chemistry. 2024. V. 64. P. 492–499. https://doi.org/10.1134/S0965544124020208 ].
  21. Акопян А.В., Есева Е.А., Лукашов М.О., Куликов Л. А. Молибденсодержащие катализаторы на основе пористых ароматических каркасов в качестве катализаторов окисления серосодержащих соединений // Нефтехимия. 2023. V. 63. № 1. P. 20–31. https://doi.org/10.31857/s0028242123010021 [Akopyan A.V., Eseva E.A., Lukashov M.O., Kulikov L.A. Molybdenum-containing catalysts based on porous aromatic frameworks as catalysts of oxidation of sulfur-containing compounds // Petrol. Chemistry. 2023. V. 63. P. 257–267. https://doi.org/10.1134/S0965544123010103 ].
  22. Akopyan A.V., Kulikov L.A., Polikarpova P.D., Shlenova A.O., Anisimov A.V., Maximov A.L., Karakhanov E. A. Metal-free oxidative desulfurization catalysts based on porous aromatic frameworks // Ind. Eng. Chem. Res. 2021. V. 60. № 25. P. 9049–9058. https://doi.org/10.1021/acs.iecr.1c00886
  23. Караханов Э.А., Гоцзюн М., Кряжева И.С., Таланова М.Ю., Теренина М.В. Алкилирование фенола алкенами в присутствии катализаторов на основе мезопористых ароматических каркасов // Изв. АН. Сер. хим. 2017. № 1. С. 39–46 [Karakhanov E.A., Gotszyun M., Kryazheva I. S., Talanova M.Y., Terenina M.V. Alkylation of phenol with olefins in the presence of catalysts based on mesoporous aromatic frameworks // Russ. Chem. Bull. 2017. V. 66. № 1. P. 39–46. https://doi.org/10.1007/s11172-017-1697-8 ].
  24. Теренина М.В., Кардашева Ю.С., Куликов Л.А., Синикова Н.А., Караханов Э.А. Родийсодержащие мезопористые ароматические каркасы как катализаторы гидроформилирования непредельных соединений // Наногетерогенный катализ. 2022. V. 7. № 2. P. 43–50. https://doi.org/10.56304/S2414215822020010 [Terenina M.V., Kardasheva Y.S., Kulikov L.A., Sinikova N.A., Karakhanov E.A. Rhodium-containing mesoporous aromatic frameworks as catalysts for hydroformylation of unsaturated compounds // Petrol. Chemistry. 2022. V. 62. P. 1321–1327. https://doi.org/10.1134/S0965544122040089 ].
  25. Maximov A., Zolotukhina A., Kulikov L., Kardasheva Y., Karakhanov E. Ruthenium catalysts based on mesoporous aromatic frameworks for the hydrogenation of arenes // React. Kinet. Mech. Cat. 2016. V. 117. № 2. P. 729–743. https://doi.org/10.1007/s11144-015-0956-7
  26. Noda Y., Li K., Engler A.M., Elliott W.A., Rioux R.M. Development of a robust sulfur quantification and speciation method for SBA-15-supported sulfonic acid catalysts // Catal. Sci. Technol. 2016. V. 6. № 15. P. 5961–5971. https://doi.org/10.1039/C6CY00292G
  27. Merino E., Verde-Sesto E., Maya E.M., Corma A., Iglesias M., Sánchez F. Mono-functionalization of porous aromatic frameworks to use as compatible heterogeneous catalysts in one-pot cascade reactions // Appl. Catal. A. 2014. V. 469. № P. 206–212. https://doi.org/10.1016/j.apcata.2013.09.052
  28. Li X., Sun J., Shao S., Hu X., Cai Y. Aldol condensation/hydrogenation for jet fuel from biomass-derived ketone platform compound in one pot // Fuel Process. Technol. 2021. V. 215. ID106768. https://doi.org/10.1016/j.fuproc.2021.106768
  29. Deng Q., Peng H., Yang Z., Wang T., Wang J., Zeng Z., Dai S. A one-pot synthesis of high-density biofuels through bifunctional mesoporous zeolite-encapsulated Pd catalysts // Appl. Catal., B. 2023. V. 337. P. 122982. https://doi.org/10.1016/j.apcatb.2023.122982
  30. Dębek R., Motak M., Grzybek T., Galvez M.E., Da Costa P. A Short review on the catalytic activity of hydrotalcite-derived materials for dry reforming of methane // Catalysts. 2017. V. 7. № 1. P. 32. https://doi.org/10.3390/catal7010032

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1. Scheme of catalyst synthesis.

Download (149KB)
3. Scheme 2. Scheme of the condensation reaction of 2-methylfuran and cyclohexanone.

Download (44KB)
4. Fig. 1. IR spectra of the synthesized materials.

Download (117KB)
5. Fig. 2. Condensation of cyclohexanone with 2-methylfuran at different ratios of reactants. Conditions: 20 mg PAF-30-SO3H, 0.4 mL cyclohexanone, 0-0.7 mL 2-methylfuran, 60°C, 1 h, 1 MPa N2. Product yields were calculated based on the conversion of cyclohexanone.

Download (115KB)
6. Fig. 3. Dependence of the yield of the condensation products of cyclohexanone and 2-methylfuran on the amount of catalyst (a) and process temperature (b). Conditions: 1) 0.4 mL cyclohexanone, 0.7 mL 2-methylfuran, 60°C, 1 h, 1 MPa N2; 2) 5 mg PAF-30-SO3H, 0.4 mL cyclohexanone, 0.7 mL 2-methylfuran, 1 h, 1 MPa N2.

Download (164KB)
7. Fig. 4. Accumulation plot of condensation products of 2-methylfuran and cyclohexanone. Conditions: 5 mg PAF-30-SO3H, 0.4 mL cyclohexanone, 0.7 mL 2-methylfuran, 60°C, 1 MPa N2.

Download (112KB)
8. Fig. 5. Reuse of PAF-30-SO3H catalyst (5%) in the condensation of 2-methylfuran and cyclohexanone. Reaction conditions: 5 mg PAF-30-SO3H, 0.4 mL cyclohexanone, 0.7 mL 2-methylfuran, 60°C, 1 h, 1 MPa N2.

Download (76KB)

Copyright (c) 2024 Russian Academy of Sciences