On the question of the nature of the observed increase in the flow of gamma radiation during precipitation: the final closure of the hypothesis of radionuclides

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Original experiments were carried out using a gamma-ray spectrometer installed at the cosmic ray station in Apatity. The spectrometer monitors the differential spectrum of gamma radiation coming from the atmosphere in the energy range of 0.1—4 MeV. Based on the results of these experiments, a final and unambiguous conclusion was made: the effect of an increase in gamma radiation during precipitation recorded at many stations of cosmic rays is not associated with the presence of radionuclides in precipitation or additional release of radionuclides from the soil. The effect is not related to radionuclides at all. The experiments confirm the hypothesis of the influence of meteorological processes on the propagation and interaction of secondary cosmic rays in the Earth’s atmosphere.

Full Text

Restricted Access

About the authors

Yu. V. Balabin

Polar Geophysical Institute

Author for correspondence.
Email: balabin@pgia.ru
Russian Federation, Apatity

A. V. Germanenko

Polar Geophysical Institute

Email: balabin@pgia.ru
Russian Federation, Apatity

B. B. Gvozdevsky

Polar Geophysical Institute

Email: balabin@pgia.ru
Russian Federation, Apatity

References

  1. Григорьев И.С., Мелихов Е.З. Физические величины. Справочник. М.: Энергоатомиздат, 1991.
  2. Гайтлер В. Квантовая теория излучения. М.: Изд-во иностранной литературы, 1956.
  3. Мурзин В.С. Введение в физику космических лучей. М.: Изд-во МГУ, 1988.
  4. Иваненко И.П. Электромагнитные каскадные процессы. М.: Изд-во Моск. ун-та, 1972.
  5. Балабин Ю.В., Германенко А.В., Гвоздевский Б.Б., Вашенюк Э.В. // Геомагн. и аэроном. 2014. Т. 54. № 3. С. 376; Balabin Y.V., Germanenko A.V., Gvozdevsky B.B., Vashenyuk E.V. // Geomagn. Aeronomy. 2014. V. 54. No. 3. P. 347.
  6. Germanenko A.V., Balabin Yu.V., Vashenyuk E.V. et al. // Astrophys. Space Sci. Trans. 2011. V. 7. No. 4. P. 471.
  7. Балабин Ю.В., Гвоздевский Б.Б., Германенко А.В. и др. // Изв. РАН. Сер. физ. 2019. Т. 83. № 5. С. 659; Balabin Y. V., Gvozdevsky B.B., Germanenko A.V. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 5. P. 600.
  8. Балабин Ю.В., Германенко А.В., Михалко Е.А. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 3. С. 360; Balabin Y.V., Germanenko A.V., Michalko E.A. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 3. P. 285.
  9. Балабин Ю.В., Германенко А.В., Михалко Е.А. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 3. С. 365; Balabin Y.V., Germanenko A.V., Michalko E.A. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 3. P. 290.
  10. Германенко А.В., Маурчев Е.А., Балабин Ю.В. // Труды Кольск. НЦ РАН. 2019. Т. 10. № 8-5. С. 82.
  11. Балабин Ю.В., Германенко А.В., Гвоздевский Б.Б. и др. // Солн.-земн. физ. 2023. Т. 9. № 2. С. 41; Balabin Yu. V., Germanenko A.V., Gvozdevsky B.B. et al. // Solar-Terr. Phys. 2023. V. 9. No. 2. P. 37.
  12. Хаякава С. Физика космических лучей. Ч. 1. Ядерно-физический аспект. Ч. 2. Астрофизический аспект. М.: Наука, 1974.
  13. Бураева Е.А., Малышевский В.С., Ратушный В.И. // Глоб. ядерн. безопасность. 2020. Т. 4. № 37. С. 17.
  14. ГОСТ 20426—82. Контроль неразрушающий. Методы дефектоскопии радиационные. Область применения.
  15. Дорман Л.И. Экспериментальные и теоретические основы астрофизики космических лучей. М.: Наука, 1975.
  16. Гуревич А.В., Зыбин К.П. // УФН. 2001. Т. 171. № 11. C. 1177; Gurevich A.V., Zybin K.P. // Phys. Usp. 2001. V. 44. No. 11. P. 1119.
  17. Gurevich A.V., Milikh G.M. // Phys. Lett. A. 1999. V. 262. No. 6. P. 457.
  18. Balabin Yu.V., Germanenko A.V., Vashenyuk E.V., Gvozdevsky B.B. // Proc. 33rd ICRC (Rio de Janeiro, 2013). P. 1.
  19. Rust W.D., Trapp R.J. // Geophys. Res. Lett. 2002. V. 29. P. 1959.
  20. Lee M.S. // J. Radiat. Protect. Res. 2017. V. 42. No. 3. P. 158.
  21. https://rp5.ru.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Event profiles of the EMC flux increase during precipitation at the stations: Neutrino, 13.02.2023 (a); Tatsinskaya, 12.08.2023 (b). It is worth paying attention to the dates along the OX axis. For Neutrino, the increase occurred in the cold season, when precipitation falls as snow and there is a deep snow cover. Several local maxima on the profile at Tatsinskaya station correspond to the intensification of rain intensity. Five-minute data of the >100 keV channels were used

Download (244KB)
3. Fig. 2. Example of spectra in one of the events in Apatity. The event of increasing 01.08.2023 is presented. For calculation of the base spectrum 10 half-hour spectra from 19 to 24 UT 31.07.2023 were used. The increasing spectrum is obtained as an average of three spectra from 01:30 to 03:00 UT 01.08.2023. The most obvious radionuclide lines are marked with arrows. For identification of radionuclide lines [1, 20] were used [1, 20]

Download (294KB)
4. Fig. 3. Spectra obtained with the open and covered water layer spectrometer: comparison of baseline (spectra in clear weather) with the open (05.12.2022) and covered water layer (06.12.2022) spectrometer (a); spectra of baseline, rising and ADP during the rising event on 06.12.2022 with the covered water layer spectrometer (b)

Download (303KB)

Copyright (c) 2024 Russian Academy of Sciences