Observation and generation of two-band noise emissions above and below half the gyrofrequency of electrons near the geomagnetic equator

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

We studied spectral characteristics of VLF waves observed onboard the Van Allen Probe B satellite on November 30, 2015. The peculiarity of the observed spectrum is the presence of two spectral maxima below and above half the electron gyrofrequency. Such a feature, typical of the spectra of chorus emissions, was observed for noise-like emissions in the case under discussion. Simultaneously with the observation of VLF emissions, the satellite also measured differential fluxes of energetic electrons, the magnitude of the ambient magnetic field, and cold plasma concentration. Based on these data, the growth rates of waves in the whistler band were calculated. The calculations were performed in two different ways, which yielded similar results. Comparison of the observed spectra of noise emissions and the calculated wave growth rates shows their good agreement.

About the authors

A. A Lyubchich

Polar Geophysical Institute

Email: lubchich@pgia.ru
Apatity, Russia

E. E Titova

Polar Geophysical Institute; Space Research Institute of the Russian Academy of Sciences

Apatity, Russia; Moscow, Russia

D. R Shklyar

Space Research Institute of the Russian Academy of Sciences

Moscow, Russia

References

  1. Santolik O., Gurnett D.A., Pickett J.S. et al. // J. Geophys. Res. Space Phys. 2003. V. 108. No. A7. Art. No. 1278.
  2. Trakhtengerts V.Y. // J. Geophys. Res. Space Phys. 1995. V. 100. No. A9. P. 17205.
  3. Omura Y., Katoh Y., Summers D. // J. Geophys. Res. Space Phys. 2008. V. 113. No. A4. Art. No. A04223.
  4. Bespalov P., Savina O. // Ann. Geophys. 2018. V. 36. P. 1201.
  5. Беспалов П.А., Савина О.Н., Жаравина П.Д. // Косм. иссл. 2022. Т. 60. № 1. С. 17
  6. Bespalov P.A., Savina O.N., Zharavina P.D. // Cosmic Res. 2022. V. 60. No. 1. P. 15.
  7. Burtis W.J., Helliwell R.A. // Planet. Space Sci. 1976. V. 24. No. 11. P. 1007.
  8. Habagishi T., Yagitani S., Omura Y. // J. Geophys. Res. Space Phys. 2014. V. 119. No. 6. P. 4475.
  9. Gao X., Lu Q., Bortnik J. et al. // Geophys. Res. Lett. 2016. V. 43. No. 6. P. 2343.
  10. Li J.X., Bortnik J., An X. et al. // Nature Commun. 2019. V. 10. No. 1. Art. No. 4672.
  11. Shklyar D., Titova E., Lubchich A. // URSI Radio Sci. Lett. 2022. V. 4. Art. No. 34.
  12. Kletzing C.A., Kurth W.S., Acuna M. et al. // Space Sci. Rev. 2013. V. 179. No. 1–4. P. 127.
  13. Carpenter D.L., Anderson R.R. // J. Geophys. Res. Space Phys. 1992. V. 97. No. A2. P. 1097.
  14. Титова Е.Е., Шкляр Д.Р., Маннинен Ю. // Геомагн. и аэрономия. 2022. Т. 62. № 4. С. 482
  15. Titova E.E., Shklyar D.R., Manninen J. // Geomagn. Aeron. 2022. V. 62. No. 4. P. 399.
  16. Шкляр Д.Р., Титова Е.Е., Маннинен Ю., Романцова Т.В. // Геомагн. и аэрономия. 2020. Т. 60. №1. С. 49
  17. Shklyar D.R., Titova E.E., Manninen Yu., Romantsova T.V. // Geomagn. Aeron. 2020. V. 60. No. 1. P. 46.
  18. Kurth W.S., De Pascuale S., Faden J.B. et al. // J. Geophys. Res. Space Physics. 2015. V. 120. No. 2. P. 904.
  19. Kennel C.F., Petschek H.E. // J. Geophys. Res. 1966. V. 71. No. 1. P. 1.
  20. Cornilleau-Wehrlin N., Solomon J., Korth A., Kremser G. // J. Geophys. Res. 1985. V. 90. No. A5. P. 4141.
  21. Любчич А.А., Демехов А.Г., Титова Е.Е., Яхнин А.Г. // Геомагн. и аэрономия. 2017. Т. 57. № 1. С. 45
  22. Lyubchich A.A., Demekhov A.G., Titova E.E., Yahnin A.G. // Geomagn. Aeron. 2017. V. 57. No. 1. P. 40.
  23. Blake J.B., Carranza P.A., Claudepierre S.G. et al. // Space Sci. Rev. 2013. V. 179. No. 1–4. P. 383.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences