Observation and generation of two-band noise emissions above and below half the gyrofrequency of electrons near the geomagnetic equator

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

We studied spectral characteristics of VLF waves observed onboard the Van Allen Probe B satellite on November 30, 2015. The peculiarity of the observed spectrum is the presence of two spectral maxima below and above half the electron gyrofrequency. Such a feature, typical of the spectra of chorus emissions, was observed for noise-like emissions in the case under discussion. Simultaneously with the observation of VLF emissions, the satellite also measured differential fluxes of energetic electrons, the magnitude of the ambient magnetic field, and cold plasma concentration. Based on these data, the growth rates of waves in the whistler band were calculated. The calculations were performed in two different ways, which yielded similar results. Comparison of the observed spectra of noise emissions and the calculated wave growth rates shows their good agreement.

Sobre autores

A. Lyubchich

Polar Geophysical Institute

Email: lubchich@pgia.ru
Apatity, Russia

E. Titova

Polar Geophysical Institute; Space Research Institute of the Russian Academy of Sciences

Apatity, Russia; Moscow, Russia

D. Shklyar

Space Research Institute of the Russian Academy of Sciences

Moscow, Russia

Bibliografia

  1. Santolik O., Gurnett D.A., Pickett J.S. et al. // J. Geophys. Res. Space Phys. 2003. V. 108. No. A7. Art. No. 1278.
  2. Trakhtengerts V.Y. // J. Geophys. Res. Space Phys. 1995. V. 100. No. A9. P. 17205.
  3. Omura Y., Katoh Y., Summers D. // J. Geophys. Res. Space Phys. 2008. V. 113. No. A4. Art. No. A04223.
  4. Bespalov P., Savina O. // Ann. Geophys. 2018. V. 36. P. 1201.
  5. Беспалов П.А., Савина О.Н., Жаравина П.Д. // Косм. иссл. 2022. Т. 60. № 1. С. 17
  6. Bespalov P.A., Savina O.N., Zharavina P.D. // Cosmic Res. 2022. V. 60. No. 1. P. 15.
  7. Burtis W.J., Helliwell R.A. // Planet. Space Sci. 1976. V. 24. No. 11. P. 1007.
  8. Habagishi T., Yagitani S., Omura Y. // J. Geophys. Res. Space Phys. 2014. V. 119. No. 6. P. 4475.
  9. Gao X., Lu Q., Bortnik J. et al. // Geophys. Res. Lett. 2016. V. 43. No. 6. P. 2343.
  10. Li J.X., Bortnik J., An X. et al. // Nature Commun. 2019. V. 10. No. 1. Art. No. 4672.
  11. Shklyar D., Titova E., Lubchich A. // URSI Radio Sci. Lett. 2022. V. 4. Art. No. 34.
  12. Kletzing C.A., Kurth W.S., Acuna M. et al. // Space Sci. Rev. 2013. V. 179. No. 1–4. P. 127.
  13. Carpenter D.L., Anderson R.R. // J. Geophys. Res. Space Phys. 1992. V. 97. No. A2. P. 1097.
  14. Титова Е.Е., Шкляр Д.Р., Маннинен Ю. // Геомагн. и аэрономия. 2022. Т. 62. № 4. С. 482
  15. Titova E.E., Shklyar D.R., Manninen J. // Geomagn. Aeron. 2022. V. 62. No. 4. P. 399.
  16. Шкляр Д.Р., Титова Е.Е., Маннинен Ю., Романцова Т.В. // Геомагн. и аэрономия. 2020. Т. 60. №1. С. 49
  17. Shklyar D.R., Titova E.E., Manninen Yu., Romantsova T.V. // Geomagn. Aeron. 2020. V. 60. No. 1. P. 46.
  18. Kurth W.S., De Pascuale S., Faden J.B. et al. // J. Geophys. Res. Space Physics. 2015. V. 120. No. 2. P. 904.
  19. Kennel C.F., Petschek H.E. // J. Geophys. Res. 1966. V. 71. No. 1. P. 1.
  20. Cornilleau-Wehrlin N., Solomon J., Korth A., Kremser G. // J. Geophys. Res. 1985. V. 90. No. A5. P. 4141.
  21. Любчич А.А., Демехов А.Г., Титова Е.Е., Яхнин А.Г. // Геомагн. и аэрономия. 2017. Т. 57. № 1. С. 45
  22. Lyubchich A.A., Demekhov A.G., Titova E.E., Yahnin A.G. // Geomagn. Aeron. 2017. V. 57. No. 1. P. 40.
  23. Blake J.B., Carranza P.A., Claudepierre S.G. et al. // Space Sci. Rev. 2013. V. 179. No. 1–4. P. 383.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025